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Introduction

� Sampling is a fundamental question in statistics and machine learning, most notably in Bayesian
methods. Sampling and optimization present many similarities, some obvious, others more mysterious.
In particular, the seminal work of Jordan, Kinderlehrer and Otto [JKO98] has unveiled a beautiful
connection between the Brownian motion and the heat equation on the one hand, and optimal transport
on the other. They showed that certain stochastic processes may be viewed as gradient descent over
the Wasserstein space of probability distributions. This connection opens the perspective of a novel
approach to sampling that leverages the rich toolbox of optimization to derive and analyze sampling
algorithms. The goal of this course is to bring together the many ingredients that make this perspective
possible starting from the basics and building to some of the most recent advances in sampling.

†Notes taken by Théo Dumont. Revised July 26, 2022.
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Motivation. � The course is largely motivated by a common goal: compute summary statistics from
posterior distributions. We primarily use the Langevin diffusion as a viable strategy to sample from a
posterior, and ultimately compute such summary statistics. Indeed, it does not require knowledge of
the normalizing constant of the target distribution.
Bayesian statistics. In the field of Bayesian statistics, we have a posterior

p(θ | x) =
ℓ(x, θ)p(θ)∫
ℓ(x, θ)p(θ) dθ

from which we want to sample; but very often, the normalizing constant Z =
∫
ℓ(x, θ)p(θ) dθ is

unknown. One particular case is when we want to sample from the posterior

π(x) =
e−V (x)∫
e−V (y) dy

∝ e−V (x),

where V is known. In order to remove the normalizing constant, an idea is to write that log π(x) =
−V (x) − logZ, and therefore that ∇x log π(x) = −∇xV (x), which we know. Now, we want to sample
from π using only its gradient/Hessian.
Langevin diffusion. The Langevin diffusion equation reads

dXt = −∇V (Xt) +
√

2 dBt,

and we know that Law(Xt)
t→∞−−−→ π. This comes handy in a lot of applications, such as numerical

integration, statistical physics – where our posterior is π(x) ∝ e−V (x) where V is the free energy –, or
uncertainty quantification.

1. Optimization

� We cover a quick introduction to optimization of strongly convex functions using gradient flows.
Then we relax strong convexity to a Polyak- Lojasiewicz condition. We also discuss that in continuous
time, which is the focus of this course, smoothness does not appear like it does for gradient descent.
Optimization focuses on problems on the form

min
x
f(x),

and while for long these problems were separated between linear and non-linear, it is now commonly
acknowledged that the good classification is convex and non-convex – the latter being arbitrarily
difficult. We will focus here on convex optimization problems, i.e. when the function f is convex. We
consider first order optimization methods, i.e. that only involve the gradient of the function f , and in
particular gradient descent and gradient flow:

Xt+1 = Xt − ηt∇f(Xt) (gradient descent)

∂tXt := Ẋt = −∇f(Xt). (gradient flow)

1.1. Strongly convex functions.

Definition 1.1 (Strong convexity). f is said to be α-strongly convex (SC) if it satisfies the following
inequality:

for all x and y, f(x) − f(y) ≥ ⟨∇f(y), x− y⟩ +
α

2
∥y − x∥2. (SC)

Given that f is strongly-convex, one has:

d

dt
∥xt − yt∥2 = 2⟨xt − yt, ẋt − ẏt⟩

= −2⟨xt − yt,∇f(xt) −∇f(yt)⟩
≤ −2α∥xt − yt∥2. by (SC)

Grönwall’s lemma then gives that ∥xt−yt∥2 ≤ e−2αt∥x0−y0∥2. In particular, if y0 = x⋆ := arg min f(x),
then ẏt = −∇f(x⋆) = 0, hence ∥xt − x⋆∥2 ≤ e−2αt∥x0 − x⋆∥2.
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Proposition 1.2 (Grönwall’s lemma, elementary version). Let φ : [0, T ] → R be a nonnegative
differentiable function for which there exists a constant C such that

φ′(t) ≤ Cφ(t) for all t ∈ [0, T ].

Then
φ(t) ≤ eCtφ(0) for all t ∈ [0, T ].

1.2. Polyak- Lojasiewicz. One could also try to bound the gap between f(xt) and f(x⋆). In order
to do that, we will only need f to satisfy the Polyak- Lojasiewicz inequality, and not necessarily (SC):

Definition 1.3 (Polyak- Lojasiewicz inequality). f is said to satisfy the Polyak- Lojasiewicz (PL) in-
equality if there exists a constant CPL such that

for all x, f(x) − f(x⋆) ≤ CPL∥∇f(x)∥2. (PL)

Now, given that f satisfies the (PL) inequality, we can proceed:

d

dt
[f(xt) − f(x⋆)] = ⟨∇f(xt), ẋt⟩

= −∥∇f(xt)∥2

≤ −1

CPL
[f(xt) − f(x⋆)]. by (PL)

Grönwall’s lemma then gives that

f(xt) − f(x⋆) ≤ e−t/CPL [f(x0) − f(x⋆)].

Proposition 1.4. (SC) implies (PL).

Proof. Let f be a α-strongly convex function. Then:

f(x⋆) − f(x) ≥ −⟨∇f(x), x− x⋆⟩ +
α

2
∥x− x⋆∥2

≥ −1

2

[
δ∥∇f(x)∥2 +

1

δ
∥x− x⋆∥2

]
+
α

2
∥x− x⋆∥2 for all δ by Young’s inequality

= − 1

2δ
∥∇f(x)∥2, by taking δ =

1

α

which shows that f satisfies (PL) with constant CPL = 1
2α , giving the same constant in the exponential

as before (−2αt). □

Proposition 1.5 (Young’s inequality). For δ > 0, developing ∥a
√
δ + b/

√
δ∥2 gives

2 ⟨a, b⟩ ≤ δ ∥a∥2 − 1

δ
∥b∥2 .

For more information on the (PL) inequality as well as its link with strong convexity and other linear
convergence rate conditions, see [KNS16].

1.3. Smoothness. The notion of smoothness is linked to inequalities of the form

f(x) − f(y) ≤ ⟨∇f(y), y − x⟩ +
β

2∥x− y∥2
.

Given that f is smooth, let us now try to bound the gap between f(xt+1) and f(x⋆) for the gradient
descent xt+1 = xt − η∇f(xt):

f(xt+1) − f(x⋆) = f(xt − η∇f(xt)) − f(x⋆)

≤ f(xt) − ⟨∇f(xt), η∇f(xt)⟩ +
β

2
∥η∇f(xt)∥2 − f(x⋆) (smoothness)

= f(xt) − f(x⋆) +

(
βη2

2
− η

)
︸ ︷︷ ︸
if ≤0 then (PL)

∥∇f(xt)∥2
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≤
(

1 − 1

2CPLβ

)
[f(xt) − f(x⋆)] with the optimal η = 1/β.

Hence

f(xt) − f(x⋆) ≤
(

1 − 1

2CPLβ

)t

[f(x0) − f(x⋆)]

≤ e−
α
β t[f(x0) − f(x⋆)] as

(
1 − α

β

)t

≤ e−
α
β t.

2. Sampling

We recall the Langevin diffusion equation:

dXt = −∇V (Xt) dt+
√

2 dBt.

The questions we are interested in:
• do we have Law(Xt) −−−→

t→∞
π ∝ e−V ?

• what is the rate of convergence?

2.1. Markov semigroups. � Markov semigroups are a canonical tool to study the convergence of
Markov processes. We introduce the main notions: semigroup, infinitesimal generator, Kolmogorov’s
backward equation and Kolmogorov’s forward equation (called Fokker–Planck in this course), and
studied the stationary distribution from Fokker–Planck. All notions are computed for Langevin as a
concrete example.
The idea: to a Markov process (Xt)t≥0, associate a family (Pt)t≥0 of operators acting on functions.
We refer to [BGL+14; Van16] for details.

2.1.1. Markov semigroups and generators.

Definition 2.1 (Markov semigroup). The Markov semigroup (Pt)t≥0 associated to a Markov process
(Xt)t≥0 is defined by

Ptf(x) = E[f(Xt) | X0 = x].

Lemma 2.2. We have the following properties:
• P0 = id
• Ps+t = PsPt = PtPs

Proof.

Ps+tf(x) = E[f(Xt+s) | X0 = x]

= E
[
E[f(Xs+t) | {Xr}r≤t]︸ ︷︷ ︸

Psf(Xt)

| X0 = x
]

= PtPsf(x). □

Definition 2.3 (Infinitesimal generator). The infinitesimal generator L associated to a Markov semi-
group (Pt)t≥0 is the operator defined by

Lf(x) = lim
t↘0

Ptf − f

t
.

Example 2.4 (Langevin). Bt ∼ N (0d, tId)

Xt = X0 +

∫ t

0

−∇V (xs) ds+
√

2Bt

= X0 − t∇V (X0) +
√

2 Bt︸︷︷︸
order

√
t

+o(t).
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Hence

E [f(Xt) | X0 = x] = E
[
f(X0) − ⟨∇V (X0), t∇f(X0) +

√
2Bt⟩

+
1

2
⟨−t∇V (X0) +

√
2Bt, ∇2f(X0)(−t∇V (X0) +

√
2Bt)⟩ + o(1) | X0 = x

]
= f(x) − t⟨∇V (x), ∇f(x)⟩ + E

[
⟨Bt, ∇2f(x)Bt⟩

]
+ o(t),

and as ⟨Bt, ∇2f(x)Bt⟩ = Tr(∇2f(x)BtB
⊤
t ) = tTr(∇2f(x)) = t∆f(x), we get that

Ptf(x) = f(x) − t⟨∇V (x), ∇f(x)⟩ + t∆f(x) + o(t),

and finally
Lf(x) = −⟨∇V (x), ∇f(x)⟩ + ∆f(x).

2.1.2. Dynamics. � What about ∂tPtf?

Proposition 2.5 (Kolmogorov Backward Equation). The Kolmogorov Backward Equation (KBE) is
∂tPtf = LPtf = PtLf .

Proof.

Pt+hf − Ptf

h
=
Ph − id

h︸ ︷︷ ︸
−−−→
t→∞

L

Ptf = Pt
Ph − id

h︸ ︷︷ ︸
−−−→
t→∞

L

f. □

And its dual version:

Proposition 2.6 (Fokker–Planck). The Kolmogorov Forward Equation, or Fokker–Planck equation,
is for π0 the density of X0, ∂tP

∗
t π0 = L∗P ∗

t π0 = P ∗
t L∗π0.

Proof. One has

Ef(Xt) = E
[
E [f(Xt) | X0]︸ ︷︷ ︸

Ptf(X0)

]

=

∫
Ptf(x)π0(x) dx

= ⟨Ptf, π0⟩L2( dx)

= ⟨f, P ∗
t π0⟩

=

∫
f(x)P ∗

t π0(x) dx.

Hence the density of Xt is P ∗
t π0. Then, one has

∂t

∫
fP ∗

t π0 = ∂t

∫
Ptfπ0 (duality)

=

∫
PtLfπ0 (KBE)

=

∫
LfP ∗

t π0 (duality)

=

∫
fL∗P ∗

t π0. (duality) □

To sum up: {
ut = Ptf ; ∂ut = Lut (backward)

πt = P ∗
t π0 ; ∂πt = L∗πt (Fokker–Planck)

Proposition 2.7 (Stationarity). The following statements are equivalent:
(i) π is a stationary distribution for (Xt)t≥0;
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(ii) L∗π = 0;
(iii) Eπ[Lf ] = 0 for all f .

Example 2.8 (Langevin).

⟨f, Lg⟩ =

∫
f [−⟨∇V, ∇g⟩ + ∆g] (infinitesimal generator for Langevin)

= −
∫
⟨f∇V, ∇g⟩ +

∫
f div(∇g) since ∆g = div(∇g)

=

∫
div(f∇V )g −

∫
⟨∇f, ∇g⟩ (integration by parts)

=

∫
div(f∇V )g +

∫
(∆f)g (integration by parts)

:= ⟨L∗f, g⟩.

Hence L∗f = div(f∇V ) + ∆f for Langevin, and the Fokker–Planck equation for Langevin is

∂tπt = div(πt∇V ) + ∆πt. (2.1)

(Remark that when ∇V = 0, we recover the heat equation / a Brownian motion.) With this, we can
determine the stationary distributions for (Xt)t≥0 in the Langevin case:

0 = L∗π

= div(π∇V ) + ∆π

= div(π∇V + ∇π)

= div(π(∇V + ∇ log π︸ ︷︷ ︸
hence =0

)),

which means that

−∇V = ∇ log π

log π = −V + cst

π ∝ e−V .

2.2. Functional inequalities and rates of convergence.

2.2.1. Poincaré inequalities. � Focusing on reversible Markov processes, we define the Dirichlet form
and the Dirichlet energy and show that reversible Markov processes can be seen as a gradient flows
of the Dirichlet energy. Then we discuss Poincaré and log-Sobolev inequalities and how they lead to
exponential convergence to stationarity in chi-squared and KL respectively. We show that log-Sobolev
implies Poincaré and briefly discussed connections to concentration and pointing to van Handel’s notes
for more details.

Definition 2.9 (Reversible Markov process). The Markov semigroup (Pt)t≥0 is reversible w.r.t. π (a
stationary distribution) if

∀f, g ∈ L2(π),

∫
Ptfg dπ =

∫
fPtg dπ,

or equivalently

∀f, g ∈ L2(π),

∫
Lfg dπ =

∫
fLg dπ,

which means that L is self-adjoint in the sense of L2(π).

Example 2.10. X0 ∼ π, f = 1A, g = 1B . Then P(X0 ∈ A,Xt ∈ B) = P(X0 ∈ B,Xt ∈ A).
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Remark 2.11. Pt and L are symmetric operators and they therefore have a real spectrum. Moreover,
Pt is a positive operator as ∫

fPtf dπ =

∫
fPt/2Pt/2f dπ

=

∫
(fPt/2)2 dπ ≥ 0.

Since

(Ptf(x))2 = E [f(Xt) | X0 = x]
2

≤ E
[
f2(Xt) | X0 = x

]
by Jensen’s inequality,

one has that ∫
Ptf(x)2 dπ ≤

∫
Ptf

2(x) dπ =

∫
f2(x) dπ.

As Pt = etL and Pt contracts, one has that L ≤ 0.

Definition 2.12 (Dirichlet form). Given a reversible Markov process / Markov semigroup with gen-
erator L and stationary measure π, the corresponding Dirichlet form is defined as

E(f, g) = −⟨f, Lg⟩L2(π) = −⟨Lf, g⟩L2(π).

Example 2.13 (Langevin). Since Lf = −⟨∇V, ∇f⟩ + ∆f , we have that

E(f, g) = −
∫
fLg dπ

=

∫
f⟨∇V, ∇g⟩dπ −

∫
f∆g dπ (not allowed to do an IBP in L2(π))

=

∫
⟨f∇V · π, ∇g⟩ −

∫
(fπ)∆g

=

∫
⟨f∇V · π, ∇g⟩ +

∫
⟨∇(fπ), ∇g⟩ (integration by parts)

=

∫
⟨fπ∇V + f ∇π︸︷︷︸

=−π∇V

+∇fπ, ∇g⟩

=

∫
⟨∇f, ∇g⟩dπ.

Markov process as a gradient flow of the Dirichlet energy. ∇L2(π)E(f) is the element of L2(π) such

that for all curve t 7→ ut ∈ L2(π) starting at u0 = f ,

∂t

∣∣∣
t=0

E(ut) =

∫
u̇0∇E(f) dπ.

We then have that

∂t

∣∣∣
t=0

E(ut) = ∂t

∣∣∣
t=0

−
∫
utLut dπ = −2

∫
˙u0Lu0 dπ,

hence ∇E(f) = −2Lf , and the gradient flow of the Dirichlet energy becomes u̇t = −∇E(ut) = 2Lut.
We recover the KBE (with a factor 2, which still draws the same curve but with twice the speed).
It appears that E(ut) − E(u⋆) is not a relevant quantity to examine. We are looking for a d such that
it is relevant to study d(πt, π) ≤ e−αt. We therefore define the χ2-divergence:

Definition 2.14 (f -divergence). f -divergences are functions of the form

(µ, ν) 7→
∫
φ

(
dµ

dν

)
dν,

where φ is convex such that φ(1) = 0.
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Definition 2.15 (χ2-divergence). The χ2-divergence between µ and ν is defined as

χ2(µ ∥ ν) =

∫ (
dµ

dν

)2

dν − 1.

It is a f -divergence, obtained for φ(x) = x2 − 1.

Remark 2.16 (Link between χ2 and KL). The KL divergence is also a f -divergence, obtained for
φ(x) = x log x. One has that

KL(µ ∥ ν) =

∫
log

(
dµ

dν

)
dµ

(Jensen)

≤ log

∫
µ2

ν2
dν = log(χ2(µ ∥ ν) + 1) ≤ χ2(µ ∥ ν). (2.2)

Actually, one has that {
KL ≈ logχ2 when the distributions are far;

KL ≈ χ2 when the distributions are close.

Now, let us upper bound ∂tχ
2(πt ∥π). In order to do so, we introduce ρt := πt/π, for which we derive

the new Fokker–Planck equation:

∂tπt = L∗πt∫
f∂tπt =

∫
fL∗πt =

∫
Lfπt.

Dividing and multiplying by π to make ρt appear gives∫
fρ̇tπ =

∫
Lfρtπ =

(∗)

∫
fLρtπ,

where (∗) comes from the fact that L is self-adjoint w.r.t π. The Fokker–Planck equation for ρt is
therefore ρ̇t = Lρt, and we have:

∂tχ
2(πt ∥π) = ∂t

∫
(ρt)

2 dπ = 2

∫
ρtρ̇t dπ = 2

∫
ρtLρt dπ = −2E(ρt).

� If we could get something like E(ρt) ≥ cχ2(πt ∥π), then we would be able to apply Grönwall’s
lemma and we would be good.

Definition 2.17 (Poincaré inequality). A Markov process (Xt)t≥0 is said to satisfy the Poincaré
inequality if

for all f, Varπ(f) ≤ CPE(f). (Poincaré)

Example 2.18. For ρt,

Varπ(ρt) =

∫
ρ2t dπ −

(∫
ρt dπ

)2

=

∫ (
dπt
dπ

)2

dπ − 1 = χ2(πt ∥π).

Therefore,

∂tχ
2(πt ∥π) ≤ − 2

CP
χ2(πt ∥π),

and then

χ2(πt ∥π) ≤ χ2(π0 ∥π)e
− 2

CP
t
.

Remark 2.19. For Langevin, the Poincaré inequality is

for all f, Varπ(f) ≤ CP

∫
∥∇f∥2 dπ,

and this property will often be simply denoted as “π satisfies the Poincaré inequality”, omitting that
it is the Poincaré inequality for the Langevin process. If π ∝ e−V and is strongly log-concave (V is
α-strongly convex), then π satisfies the Poincaré inequality with parameter CP = 1

α .
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Definition 2.20 (Brascamp-Lieb inequality). For π ∝ e−V where V strictly convex, i.e. (∇2V )−1

exists, we say that f satisfies a Brascamp-Lieb inequality if

Varπ(f) ≤ C

∫
∇f⊤(∇2V )−1∇f dπ.

More generally, the Mirror Poincaré inequality is

Varπ(f) ≤ C

∫
∇f⊤(∇2φ)−1∇f dπ.

A natural question that arises is to ask for which Markov process do we have E(f) =
∫
∇f⊤(∇2φ)−1∇f dπ,

with φ arbitrary?

Definition 2.21 (Mirror Langevin). The Mirror Langevin process is defined by{
Xt = ∇φ∗(Yt)

dYt = −∇φ(Xt) dt+
√

2[∇2φ(Xt)]
1/2 dBt.

When φ = V , we get the Newton-Langevin process [Che+20].

2.2.2. Log-Sobolev inequalities. � The idea: getting the same convergence properties but with KL
instead of χ2.

∂t KL(πt ∥π) = ∂t

∫
log(ρt)ρtπ

=

∫
ρ̇t
ρt
ρtπ +

∫
log(ρt)ρ̇tπ

=

∫
Lρtπ︸ ︷︷ ︸
=0

+

∫
log(ρt)Lρtπ

= −E(ρt, log ρt),

so we are looking for an inequality that looks like KL(πt ∥π) ≤ CE(ρt, log ρt).

Definition 2.22 (Log-Sobolev inequality). A Markov process is said to satisfy a logarithmic Sobolev
inequality (LSI) if for all ρ densities w.r.t. π (and not only ρt),

KL(ρπ ∥π) ≤ CLS

2
E(ρ, log ρ). (LSI)

With this, using Grönwall’s lemma we obtain KL(πt ∥π) ≤ CLS

2 E(ρ, log ρ), which is better than the

same inequality with χ2 because of the cold start (π0 far from π).
Let us recap. We have shown so far:{

(Poincaré) ⇐⇒ χ2(πt ∥π) ≤ χ2(π0 ∥π)e
− 2t

CP

(LSI) ⇐⇒ KL(πt ∥π) ≤ KL(π0 ∥π)e
− 2t

CLS ,

and the ⇐= is the important thing [Van16].

Example 2.23 (Langevin).

E(ρ, log ρ) =

∫
⟨∇ρ, ∇ log ρ⟩dπ

=

∫
⟨∇ log ρ, ∇ log ρ⟩ ρπ︸︷︷︸

:=µ

=

∫ ∥∥∥∇ log
µ

π

∥∥∥2 dµ, (FI)

which is the Fisher information of µ w.r.t. π (but not the same Fisher information that the one in
statistics!).
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The logarithmic-Sobolev inequality can actually be re-written as

KL(µ ∥ ν) ≤ 1

2ρ
FI(µ | ν).

Other relevant inequalities are Talagrand’s inequality

W2(µ, ν) ≤

√
2 KL(µ ∥ ν)

ρ

and the HWI inequality

KL(µ ∥ ν) ≤ W2(µ, ν)
√

FI(µ | ν) − K

2
W2(µ, ν)2.

See [OV00] for more information.

Proposition 2.24. (LSI) =⇒ (Poincaré).

Proof. ρ = 1 + εf with
∫
f dπ = 0.

KL(ρπ ∥π) =

∫
log(1 + ερ)ρπ =

ε2

2

∫
f2 dπ + o(ε2)

E(ρ, log ρ) = −
∫

(�1 + εf)L log(1 + εf) dπ

= ε2
∫
fLf dπ︸ ︷︷ ︸
=E(f)

+o(ε2).

Then, LSI implies that 1
2

∫
f2 dπ ≤ CLS

2 E(f) + o(1), i.e.
∫
f2 dπ ≤ CLSE(f), which is the Poincaré

inequality with constant CP = CLS. □

This means we can have concentration inequalities for the stationary process:

Theorem 2.25 (Concentration inequalities, [BGL+14]). Let π be the stationary distribution of the
Langevin distribution and let f : Rd → Rd be 1-Lipschitz. Then

(i) if π satisfies a (Poincaré) inequality with constant CP, then

π(f − Eπf > t) ≤ 3e−t/
√
CP .

(ii) if π satisfies a (LSI) with constant CLS, then

π(f − Eπf > t) ≤ 3e−t2/2CLS ,

which is great for tensorization.

3. Optimal Transport (OT)

For references, see [Vil03; Vil09; San15; AG13].

3.1. The OT problem. 1 The Monge problem is

min
T#µ=ν

∫
c(x, T (x)) dµ(x), (Monge)

and often we will be using c(x, T (x)) := d2(x, T (x)) = ∥x − T (x)∥2. But in the general case, the
optimal T will not be a map, but more generally a coupling. For instance, in the case where µ is one
dirac and ν two diracs (Figure 1), we would like the optimal T to be

T (x) =

{
y1 with probability 1/2,

y2 with probability 1/2,

1x I did not take notes for this part of the course. If you did, it would be great if you could send them to me by

email at theo.dumont@univ-eiffel.fr!
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which is not a function but rather a Markov kernel.

µ = δx

δy1

δy2

Figure 1. Optimal transport between one dirac and two diracs.

Example 3.1 (Couplings).
• γ(A×B) = γ(A)γ(B), the independent coupling

• for X ∼ N (0, 1) and Y ∼ N (0, 1), define X,Y ∼ γ ⇐⇒ (X,Y ) ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
, the

Gaussian coupling
• for X ∼ N (0, 1) and Y ∼ Law(X2), define X,Y ∼ γ ⇐⇒ Y = X2 a.s.. This can be written
γ( dx, dy) = µ( dx)δy=x2 , or (X,Y ) ∼ (id, x 7→ x2)#µ.

Theorem 3.2 (Existence of a minimizer). The minimum is achieved (by a γ).

Proof. Use the l.s.c. and the fact that Γµ,ν is compact (Prokhorov’s theorem). □

Distances between probability measures. Quantifying the distance between two probability measures
can be done using e.g. the Total Variation (TV) distance TV = 1

2

∫
|p − q|, the Lp distance Lp =

∥p − q∥Lp , the χ2, KL, the Hellinger distance... But all do not behave the same way: for instance,
TV(δx, δy) = 1x ̸=y, which is not nice in our context. We would rather prefer something like the
Wasserstein distance, namely W2(δx, δy) = ∥x− y∥.

3.2. Fundamental theorem of OT. We focus in the rest of the lecture on the case where c(x, y) =
1
2∥x− y∥2. Duality.

1

2
W2

2(µ, ν) = inf
γ∈M+

sup
f,g∈L1

[∫
∥x− y∥2

2
dγ(x, y) +

∫
f dµ−

∫
f(x) dγ(x, y) +

∫
g dν −

∫
g(y) dγ(x, y)

]

≥ sup
f,g∈L1

inf
γ∈M+


∫
f dµ+

∫
g dν +

∫ (
∥x− y∥2

2
− f(x) − g(y)

)
︸ ︷︷ ︸

have to be ≥0

dγ(x, y)


= sup

f,g∈D(µ,ν)

∫
f dµ+

∫
g dν, (DP)

where we denoted

D(µ, ν) :=

{
(f, g) ∈ L1(µ) × L1(ν) : f(x) + g(y) ≤ ∥x− y∥2

2
for all (x, y)

}
.

This inequality is already quite nice, since it allows one to give a bound on
∫
f+
∫
g by upper bounding

W2
2, which is easy to do (one just has to exhibit a non-optimal γ). But one can actually do much

better:

Theorem 3.3 (Fundamental theorem of OT). For µ, ν ∈ P2(Rd) such that
∫
∥x∥2 dµ(x) < +∞ (same

for ν), one has
(i) (strong duality) 1

2 W2
2(µ, ν) = supf,g

∫
f dµ+

∫
g dν.

(ii) (existence of dual potentials) There exists f, g maximizing (DP). Moreover, we can write f =
∥·∥2

2 − φ and g = ∥·∥2

2 − φ⋆ with φ proper l.s.c. and φ(x) + φ⋆(y) = ⟨x, y⟩ γ-a.s.
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(iii) (Brenier’s theorem) If, in addition, µ has a density w.r.t. the Lebesgue measure, then γ is unique
and induced by a deterministic transport map T : Rd → Rd, characterized by the (µ-a.s.) unique
gradient of a proper l.s.c. convex function: (∇φ)#µ = ν.

Remark 3.4. φ⋆(y) = supx{⟨x, y⟩−φ(x)}, therefore φ(x)+φ⋆(y) ≥ ⟨x, y⟩, and the previous theorem
is actually the equality case, given by the first order condition y = ∇φ(x).

Proof of Theorem 3.3. The proof will require the introduction of the notion of cyclical monotonicity.
(1) Cyclical monotonicity. For g : R → R convex, one has

g(x) − g(y) ≤ (x− y)g′(x)
+ g(y) − g(x) ≤ (y − x)g′(y)

(g′(x) − g′(y))(x− y) ≥ 0,

which is just a writing of the fact that g′ is increasing. Similarly, in Rd, a monotone g will satisfy
⟨∇g(x) − ∇g(y), x − y⟩ ≥ 0, but this will not be enough in our case. For a family of points
(xi)1≤i≤n, summing the inequalities

+i g(xi) − g(xi+1) ≤ ⟨xi − xi+1, ∇g(xi)⟩∑n
i=1⟨∇g(xi), xi − xi+1⟩ ≥ 0 with xn+1 := x1.

Definition 3.5 (Cyclical monotonicity). A set A ∈ Rd×Rd is cyclically monotone (CM) if ∀k ≥ 2
and any (x1, y1), . . . , (xk, yk),

k∑
i=1

⟨xi − xi+1, yi⟩ ≥ 0, with xk+1 := x1.

We have shown that the set {(x,∇g(x))} is CM for g convex. The reverse implication will be
of particular use for us:

Theorem 3.6 ([Roc70]). A is cyclically monotone if and only if there exists a closed (proper l.s.c.)
convex φ such that A ⊂ {(x, ∂φ(x))}.

(2) OT plans have CM support. We have the following equivalences:

(x1, y1), . . . , (xn, yn) ∈ supp γ =⇒
n∑

i=1

∥xi − yi∥2 ≤
n∑

i=1

∥xσ(i) − yi∥2 for all σ

⇐⇒
n∑

i=1

⟨xσ(i), yi⟩ ≤
n∑

i=1

⟨xi, yi⟩ for all σ

⇐⇒
n∑

i=1

⟨xi − xσ(i), yi⟩ ≥ 0 for all σ

=⇒ cyclical monotonicity.

Hence supp γ ⊂ ∂φ = {∇φ} by Theorem 3.6, this last equality being Lebesgue a.e., since µ has a
density.

(3) Dual optimality. We say that (f, g) ∈ D(µ, ν) are dual feasible. Let us now fix f . For all g s.t.
(f, g) dual feasible,

f(x) + g(y) ≤ ∥x− y∥2

2
for all (x, y)

g(y) ≤ ∥x− y∥2

2
− f(x) for all (x, y)

Let us then take

g(y) := inf
x

∥x− y∥2

2
− f(x)

=
∥y∥2

2
− sup

x

(
⟨x, y⟩ −

(
∥x∥2

2
− f(x)

))
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=
∥y∥2

2
− sup

x
(⟨x, y⟩ − φ(x))

we then have φ∗(y) = ∥y∥2

2 − g(y). So, for fixed f = ∥·∥2

2 − φ, g = ∥·∥2

2 − φ∗. Similarly, for fixed

g = ∥·∥2

2 − φ∗, f = ∥·∥2

2 − φ∗∗. If (f, g) do exist, then they must satisfy{
f = ∥·∥2

2 − φ

g = ∥·∥2

2 − φ∗,

since φ = φ∗∗.
(4) Poof of strong duality. Let γ be an optimal transport plan. We have supp γ ⊂ {(x, ∂φ(x))}.

Let’s define f = ∥ · ∥2/2 − φ and g = ∥ · ∥2/2 − φ∗. Are they dual feasible?

f(x) + g(y) =
∥x∥2

2
+

∥y∥2

2
− (φ(x) + φ∗(y))

=
∥x∥2

2
+

∥y∥2

2
− ⟨x, y⟩ on supp γ as y ∈ ∂φ(x)

=
∥x− y∥2

2
on supp γ.

Then 1
2

∫
∥x− y∥2 dγ(x, y) =

∫
f dµ+

∫
g dν, hence the strong duality.

(5) Uniqueness for Brenier. Let us assume another OT plan π = (id,∇φπ)#µ, associated with the

dual potentials fπ = ∥ · ∥2/2 − φπ and gπ = ∥ · ∥2/2 − φ∗
π. Then:∫

(φπ(x) + φ∗
π(y)) dγ(x, y) =

∫
φπ dµ+

∫
φ∗
π dν

=

∫
φdµ+

∫
φ∗ dν as both couples are dual optimal

=

∫
⟨x, y⟩dγ(x, y),

hence
∫

(φπ(x) + φ∗
π(y) − ⟨x, y⟩) dγ(x, y) = 0, then φπ(x) + φ∗

π(y) = ⟨x, y⟩ γ-a.s., which means
that y = ∇φπ(x) γ-a.s., and finally ∇φ(x) = ∇φπ(x) µ-a.s.. □

Remark 3.7. φ and φ∗ are called Kantorovitch potentials, and are different from the dual potentials.

Remark 3.8. ∇φ∗ = (∇φ)−1; if ∇φ = Tµ→ν , then ∇φ∗ = Tν→µ.

From now on, all measures have a density, i.e. are in P2,ac(Rd).

3.3. Curves in the Wasserstein space.

3.3.1. The Wasserstein space as a metric space.

Proposition 3.9. (P2(Rd),W2) is a complete separable metric space.

Proof. We check the axioms:
• W2(µ, ν) ≥ 0
• W2(µ, µ) = cost(id) = 0
• W2(µ, ν) = W2(ν, µ)
• triangular inequality: we will need the gluing lemma:

Lemma 3.10 (Gluing lemma). Let X,Y, Z be three Polish spaces and let γXZ ∈ P(X × Z), γY Z ∈
P(Y × Z) be such that πZ

#γXZ = πZ
#γY Z . Then there exists a measure γ ∈ P(X × Y × Z) such that

πX,Z
# γXY Z = γXZ ,

πY,Z
# γXY Z = γY Z .
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Back to the triangle inequality:

W2(µ, ν) ≤
(∫

∥x− y∥2 dγXY Z(x, y, z)

)1/2

by sub-optimality of γXY Z

≤
(∫

∥x− z∥2 dγXZ(x, z)

)1/2

+

(∫
∥z − y∥2 dγY Z(y, z)

)1/2

by triangular inequality in L2

= W2(µ, ρ) + W2(ρ, ν). □

In fact, (P2(Rd),W2) is a length space! We can use Alexandrov geometry to measure some bounds
on the curvature of the space (it is non-negatively curved, and flat in the subspace of the Gaussians
as well of the diracs).

Figure 2. Alexandrov geometry.

3.3.2. The continuity equation. Let’s make a fluid dynamics analogy, where µt is the density of the
fluid at time t. There are two perspectives:
• the Lagrangian perspective: modelling the movement of each particule Ẋt = vt(Xt)
• the Eulerian perspective: modelling the behaviour of the whole density, µ̇t = ?
The differential equation satisfied by µt will be called the continuity equation.

Theorem 3.11 (Continuity Equation). Let (vt)t≥0 : Rd → Rd be a time dependent vetor field and

suppose that particles evolve according to the ODE Ẋt = vt(Xt), t ≥ 0. Then Xt ∼ µt where µt evolves
according to the continuity equation (CE)

∂tµt + div(µtvt) = 0. (CE)

Proof. Let f be a test function.∫
f∂tµt = ∂tE[f(Xt)]

= E[⟨∇f(Xt), Ẋt⟩]
= E[⟨∇f(Xt), vt(Xt)⟩]

=

∫
⟨∇f(x), µt(x)vt(x)⟩dx

= −
∫
f(x) div(µt(x)vt(x)) dx. (integration by parts) □

In fact, every “nice” curve of probability measures can be interpreted as a fluid flow along a time-
varying vector field. And by nice, we mean:

Definition 3.12 (a.c. curve). A curve t 7→ µt in P2,ac(Rd) is said to be absolutely continuous (a.c.)
if at every time the metric derivative is finite, i.e. if

for all t, |µ̇|(t) := lim
s→t

W2(µs, µt)

|s− t|
<∞.
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This vector field will not be unique: if we take wt such that div(µtwt) = 0, then we still have
∂tµt = −div(µt(vt)) = − div(µt(vt +wt)). For instance, on the open ball Br(R2) with r > 0, equipped
with the uniform density, any vector field vt that consists in a rotation around (0, 0) satisfies the
continuity equation, but one would prefer to choose the null vector field (Figure 3). Then, how to
select vt in a canonical way? We will either try to minimize the energy

∫
∥vt∥2L2(µt)

dt or force vt to

be the gradient of a function ψt – these two conditions being actually equivalent.

Br(R2)

vt

Figure 3. Non-uniqueness of the representing vector field: any rotating vector field
satisfies (CE).

Theorem 3.13 (Curves of measures as fluid flows). Let t 7→ µt be an a.c. curve of measures. Then
(i) For any vector field (ṽt)t≥0 s.t. (CE) holds, we have

µ̇|(t) ≤ ∥ṽt∥L2(µt) “for all t”. (3.1)

(ii) Conversely, there exists a unique choice of vector field (vt)t≥0 that satisfies (CE) s.t.

∥vt∥L2(µt) ≤ |µ̇(t)| “for all t”.

Moreover, vt = ∇ψt for ψt : Rd → R and vt = limδ→0
Tµt→µt+δ

−id

δ (Tµt→µt+δ
− id is also called

the displacement map).

Proof. (i) Ẋt = ṽt(Xt). We define a flow map F̃s,t that maps Xs to Xt by any (Ft,t+δ)#µt = µt+δ,

or equivalently by Xt ∼ µt =⇒ F̃t,t+δ(Xt) ∼ µt+δ. By sub-optimality, we have

W2
2(µt, µt+δ)

δ2
≤
∫

∥F̃t,t+δ(x) − x∥2

δ2
dµt(x)

=

∫
∥ṽt∥2 dµt + o(1) as F̃t,t+δ(x) − x = δṽt(x) + o(δ)

and since W2
2(µt, µt+δ)/δ2 −−−→

δ→0
|µ̇|(t)2, we obtain the upper bound.

(ii) Let (vt) satisfying (CE) and ∥vt∥L2(µt) ≤ |µ̇|(t) for all t ((vt) is a minimizer. Since g : wt 7→
∥vt + wt∥2L2(µt)

is minimized at 0 over the convex set {wt | div(µtwt) = 0} and g is strictly

convex, we get the uniqueness. We now show that gradient fields, i.e. vector fields of the form
vt = ψt, satisfying (CE) are optimal.
• intuitions:

(a) We have that

∂t

∫
fµt = ∂tE[f(Xt)] = E[⟨∇f(Xt), vt(Xt)⟩] =

∫
⟨∇f, vt⟩dµt,

hence if vt = v∇t + v∇
⊥

t , then it will be better to only keep the component v∇t , the
projection of vt on {∇f, f ∈ . . . }. But this set is not convex and all so this is not rigorous
at all.

(b) In the previous proof, we lost information by taking a random flow map. If we take

the optimal Tµt→µt+δ
we get ṽt = limδ→0

Tµt→µt+δ
−id

δ , and Tµt→µt+δ
is the gradient of a

convex function by Brenier’s theorem.
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• actual proof: Let’s take vt = ∇ψt. On one hand,

A :=

∫
ψt dµt+δ −

∫
ψt dµt

δ
=

∫
ψt∂tµt + o(1)

= −
∫
ψt div(µt∇ψt) + o(1)

=

∫
∥∇ψt∥2 dµt + o(1)

= ∥∇ψt∥2L2(µt)
+ o(1)

and on the other hand

A =

∫
ψt ◦ Tµt→µt+δ

dµt −
∫
ψt dµt

δ

=

∫
⟨∇ψt,

Tµt→µt+δ
− id

δ
⟩dµt + o(1)

≤ ∥∇ψt∥L2(µt)

∥Tµt→µt+δ
− id ∥L2(µt)

δ
+ o(1)

−−−→
δ→0

∥∇ψt∥L2(µt)|µ̇|(t),

which means that ∥∇ψt∥L2(µt) ≤ |µ̇|(t), hence the optimality. □

So far, we proved that optimal vector fields are unique and satisfy ∥∇ψt∥L2(µt) = |µ̇|(t) (magnitude).

Now, we will see the vector fields vt as a velocity in the tangent space of P2,ac(Rd): this is Otto calculus.

3.3.3. The Wasserstein space as a Riemannian manifold: Otto Calculus. Background on Riemannian
geometry. For reference on Riemannian geometry, see [Pet06; Do 92; Sch16].

Definition 3.14. A manifold M of dimension d is a space which is locally homeomorphic to Rd. At
each point p ∈ M is a tangent space TpM = {velocity of curves through p}. This whole structure (the
tangent bundle) has to be smooth. A Riemannian metric is a smoothly varying choice p 7→ ⟨·, ·⟩p, an
inner product on TpM. Then, for any curve γ, we have ∥γ̇(t)∥2γ(t) = ⟨γ̇(t), γ̇(t)⟩γ(t). The distance

function is defined as

d(p, q) = inf{
∫ 1

0

∥γ̇(t)∥2 dt | γ(0) = p, γ(1) = q}.

If the infimum is achieved by a γ⋆, then γ⋆ is called a geodesic between p and q. Geodesics can be
reparametrized to have constant speed ∥γ̇(t)∥ = c for all t ∈ [0, 1]. In this case, we get d(γ(s), γ(t)) =
|s − t|d(γ(0), γ(1)) for all 0 ≤ s < t ≤ 1. In the following sections, all geodesics considered will be
chosen of constant speed.

γ̇(0)

γ̇′(0)
p

We denote by P := P2,ac(Rd).

Proposition 3.15. For all µ ∈ P, the tangent space of the Wasserstein space at µ is

TµP = {∇ψ | ψ ∈ C∞
c (Rd)}

L2(µ)
= {λ(T − id) | λ > 0, T is an OT map}

L2(µ)
,

and the inner product on TµP is ⟨∇ψ, ∇ψ′⟩µ =
∫
⟨∇ψ, ∇ψ′⟩dµ.

Recall that every vt ∈ TµP satisfying (CE) is optimal.
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Theorem 3.16. Let µ0, µ1 ∈ P. Then

W2(µ0, µ1) = inf

{∫ 1

0

∥vt∥L2(µt) dt | (CE) holds

}
,

the Benamou-Brenier formula. Moreover, the infimum is attained (there exists geodesics) as follows:
let γ be an optimal coupling and (X0, X1) ∼ γ. Then µt is the unique constant speed geodesic between
µ0 and µ1, where Xt = (1 − t)X0 + tX1 ∼ µt. We can also say that

µt = [(1 − t) id +tTµ0→µ1
]#µ0 = [id +t(Tµ0→µ1

− id)]#µ0.

Proof. • equality: Let’s take a partition 0 = t0 < t1 < · · · < tk = 1.

W2(µ0, µ1) ≤
k∑

i=1

W2(µi−1, µi)

ti − ti−1︸ ︷︷ ︸
→|µ̇|(ti−1)

(ti − ti−1) (triangle inequality)

→
∫ 1

0

|µ̇|(t) dt

≤ inf

{∫
∥vt∥ dt | (CE) holds

}
by integrating (3.1).

To show the reverse inequality, we take Xt = X0 + t(X1 − X0), for which Ẋt = X1 − X0. Since

Ẋt = vt(Xt), E∥Ẋt∥2 = ∥vt∥2L2(µt)
. But we also have

E∥Ẋt∥2 = Eγ∥X0 −X1∥2 =

∫
∥x0 − x1∥2 dγ(x0, x1) = W2

2(µ0, µ1),

which means we have equality for this choice of (vt).

• uniqueness: Let Ẋt = ṽt(Xt) s.t. E∥Ẋt∥2 = cst, X0 ∼ µ0, X1 ∼ µ1. Then

W2(µ0, µ1) ≤ E∥X0 −X1∥2 = E
∥∥∥∥∫ 1

0

Ẋt dt

∥∥∥∥2
≤
∫ 1

0

E∥Ẋt∥2 dt by Jensen’s inequality

=

∫ 1

0

∥ṽt∥2L2(µt)
dt.

We now have two bound gaps that can be tightened by:
(1) choosing the optimal coupling;
(2) applying Jensen over a constant integrand. □

Definition 3.17 (Wasserstein geodesic). Let µ0, µ1 ∈ P, X0 ∼ µ0, X1 ∼ µ1 optimally coupled, and
Xt = (1 − t)X0 + tX1. Then Law(Xt = µt) ⇐⇒ µt = [id +t(Tµ0→µ1 − id)]#µ0, and the curve t 7→ µt

is called Wasserstein geodesic between µ0 and µ1, a.k.a. the displacement/McCann interpolation.

Remark 3.18. This induces a new geometry which is not the one induced by L2: if µ0 and µ1 have

densities p0 and p1, that we define the mixture pt = (1−t)p0+tp1, then d(µ0, µ1) =
(∫

∥p0 − p1∥2
)1/2 ̸=

W2(µ0, µ1).

Remark 3.19. Can we find geometries that share the same geodesics? Yes: recall that

W1(µ, ν) = inf
γ∈Γµ,ν

∫
∥x− y∥ dγ(x, y) = sup

∥∇f∥∞≤1

∫
f d(µ− ν).

W1 has the same geodesics as L2, but it is not a flat space. Indeed,

W1(µs, µt) = sup
∥∇f∥∞≤1

∫
f d(µs − µt) = (t− s) sup

∥∇f∥∞≤1

∫
f d(µ0 − µ1) = (t− s)W1(µ0, µ1).

Geometry is carried by the distances, not by the geodesics.
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4. Wasserstein gradient flows

� We show that the Langevin diffusion can be interpreted as Wasserstein flow of the KL divergence
using Otto calculus. We show that Log-Sobolev inequality corresponds to a PL condition in this
geometry and we recover exponential convergence of the KL. We also use this new framework to show
that such inequalities hold whenever the potential is strongly convex, which, in turn, implies strong
convexity of the KL in this geometry.
The goal: Interpret the Langevin diffusion dXt = −∇V (Xt) dt +

√
2 dBt as a Wasserstein gradient

flow of KL(· ∥π), with π ∝ e−V , i.e. find µt such that

∂tµt + div(µt · −∇W KL(µt ∥π)) = 0.

4.1. Wasserstein gradient. We would like to generalize the notion of gradient in a manifold. The
form ∇f(x) = (∂x1

f(x), . . . , ∂xn
f(x)) doesn’t seem to be the right thing to generalize.

• in the Euclidean space:
f(p+ tv) − f(p)

t
−−−→
t→0

⟨∇f(p), v⟩,

but we have to consider ∇f(p) as an element of the dual of Rd, and v as an element of the tangent
space at p ∈ Rd.

• in a Riemannian manifold: replacing p+ tv by γ(t), the Riemannian gradient is defined by:

f(γ(t)) − f(p)

t
−−−→
t→0

⟨∇Mf(p), v⟩p.

v

p

γ

See [Bou22] for more information.
• in the Wasserstein space: for F : P → R a functional on the Wasserstein space, the Wasserstein

gradient is defined by:

F(µt) −F(µ)

t
−−−→
t→0

⟨∇WF(µ), ∇ψ⟩µ,

∇ψ

µ

(µt)t

and since ∇WF(µ) belongs to TµP, it will be the (standard) gradient of some function ψ:

Definition 4.1 (First variation). Let F : P → R be a functional. The first variation of F , denoted
δF , is defined by

lim
ε→0

F(µ+ εχ) −F(µ)

ε
=

∫
δF(µ) · χ for all χ s.t.

∫
χ = 0.

Now,

lim
t→0

F(µt) −F(µ)

t
= ∂t

∣∣∣
t=0

F(µt)

=

∫
δF(µ) · ∂tµt dt

= −
∫
δF(µ) div(µt∇ψt)

=

∫
⟨∇δF(µ), ∇ψt⟩dµt.
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Hence the Wasserstein gradient is ∇δF(µ), and it is unique. This also shows that the Wasserstein
gradient ∇WF(µ) is a vector field of Rd such that for all vector field v,

F((I + tv)#µ) = F(µ) + t⟨∇WF(µ), v ⟩L2(µ) + o(h).

Definition 4.2 (Wasserstein gradient). Let F : P → R be a functional. The Wasserstein gradient of
F at µ is ∇WF(µ) = ∇δF(µ).

Definition 4.3 (Wasserstein gradient flow). The (negative) Wasserstein gradient flow of F is a curve
of measures t 7→ µt s.t. its tangent vector at time t is vt = −∇WF(µt), or equivalently s.t. ∂tµt =
div(−µt∇WF(µt)) = div(−µt∇δF(µt)).

Example 4.4 (First variations and Wasserstein GF of important functionals).

(1) The potential energy E(µ) =
∫
V dµ: since E(µ+εχ)−E(µ)

ε =
∫
V dχ, one has that δE(µ) = V , and

therefore that ∇WE(µ) = ∇V (·);
(2) The entropy H(µ) =

∫
µ logµ: similarly, ∇WH(µ) = ∇ logµ;

(3) The interaction potential W(µ) = 1
2

∫
W (x− y) dµ(x) dµ(y): one has that ∇WW(µ) =

∫
∇W (· −

y) dµ(y).

4.2. Langevin diffusion as a Wasserstein gradient flow. Let’s compute the Wasserstein gradient
of F := KL(· ∥π), with π ∝ e−V :

F(µ) = KL(µ ∥π)

=

∫
µ log

µ

π

=

∫
µ logµ−

∫
µ log π︸︷︷︸

=−V

= H(µ) + E(µ).

Therefore, ∇WF(µ) = ∇ logµ+ ∇V = ∇
(
log µ

π

)
, and the Wasserstein gradient flow reads

Ẋt = −∇WF(µt)(Xt) = −∇ log
µt

π
(Xt) = −∇ logµt(Xt) + ∇V (Xt).

The gradient flow expression for ∂tµt then becomes

∂tµt = div(µt(∇ logµt −∇V (Xt))) = div(∇µt) − div(µt∇V (Xt)) = ∆µt − div(µt∇V (Xt)),

and we recover the Fokker–Planck equation for Langevin (2.1).
� This is the result of [JKO98] – except they didn’t need a notion of gradient to obtain this.

4.3. Rates of convergence. We already know that if the Hessian of a function f is greater than αI,
we can obtain a rate of convergence of e−2αt for f . In our case, what is the Hessian of KL(· ∥π)?
For a function f : Rd → R, one has

∂tf(xt) = ⟨∇f(xt), ẋt⟩
∂2t f(xt) = ⟨∇2f(xt)ẋt, ẋt⟩ + ⟨∇f(xt), ẍt⟩︸ ︷︷ ︸

=0

,

where the second term is equal to zero since we only examine constant speed geodesics. In the
Wasserstein space, a geodesic is given by µt = [id +t (T − id)︸ ︷︷ ︸

∈T µP

]#µ0. By analogy, we therefore say that

the Wasserstein Hessian ∇2
W satisfies

∂2tF(µt) := ⟨∇2
WF(µt) · (T − id), T − id⟩µt .

Let us compute this using the fact that F = E + H:
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• for the potential E :

∂tE(µt) = ⟨∇WE(µt), T − id⟩L2(µt) = ⟨∇V, T − id⟩L2(µt)

∂t

∣∣∣
t=0

E(µt) = E[⟨∇V (X0), T (X0) −X0⟩]

∂2t

∣∣∣
t=0

E(µt) = E[⟨∇2V (X0) · (T (X0) −X0), T (X0) −X0⟩]

hence ∇2
WE(µ0) = ∇2V ; and if V is α-strongly convex, then

∂2t

∣∣∣
t=0

E(µt) ≥ αE∥T (X0) −X0∥2 = αW2
2(µ ∥π).

• for the entropy H: Denoting Tt the OT map from µ0 to µt, we have for any function h∫
hdµ0 = E[h(X0)]

= E[h(T−1
t (Xt))]

=

∫
h(T−1

t (y))µt(y) dy

=

∫
h(x)µt ◦ Tt(x) det(∇Tt(x)) dx (y = Tt(x))

hence µ0(x) = µt ◦ Tt(x) det(∇Tt(x)). Therefore

H(µt) =

∫
µt logµt

= E[logµt ◦ Tt(X0)]

= E[log(det(∇Tt(X0))−1µ0(X0))]

= H(µ0) − E log det(∇Tt(X0)).

Moreover, ∇Tt = (1 − t) id +t∇T , which is the linear combination of the identity and the Hessian
of a convex function, hence ∇Tt(X0) is a positive semi-definite matrix. The log det being concave
over the space of PSD matrices [BBV04], we get that t 7→ H(µt) is convex.

Hence

∂2t KL(µt ∥π) = ∂2t E(µt) + ∂2tH(µt) ≥ αW2
2(µ ∥π) + 0,

where we used the convexity of H. In fact, we have ∂2t |t=0 H(µt) =
∫
∥∇T − id ∥2F dµ0 ≥ 0. See [Gig12]

for more information. We have proved the following theorem:

Theorem 4.5. If π ∝ e−V where V is α-strongly convex, then KL(· ∥π) is α-strongly convex along
Wasserstein geodesics.

Let us now study the rate of convergence.

F(µt) = KL(µt ∥π)

∂tF(µt) = ⟨∇WF(µt), −∇WF(µt)⟩L2(µt) (just the gradient flow)

= −∥∇WF(µt)∥2L2(µt)

≤ −2αF(µt) by (PL).

Then by Grönwall’s lemma F(µt) ≤ F(µ0)e−2αt. In order to show that the KL satisfies the (PL)
inequality, we first use a Taylor approximation of the KL between µ0 and µ1:

f(t) = f(0) + tf ′(0) +

∫ t

0

t− s

2
f ′′(s) ds

KL(µt ∥π) ≥ KL(µ0 ∥π) + ⟨∇W KL(µ0 ∥π), t(T − id)⟩L2(µ0) +
α

2
t2 ∥T − id ∥2L2(µ0)︸ ︷︷ ︸

W2
2(µ0,µ1)

. (4.1)
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By taking t = 1, µ0 := µ and µ1 := arg minµ F(µ) = π, this inequality becomes

F(µ) ≤ −⟨∇W KL(µ ∥π), T − id⟩L2(µ) −
α

2

∫
∥T − id ∥2 dµ

≤ δ

2
∥∇W KL(µ ∥π)∥2L2(µ) +

1

2δ
∥T − id ∥2L2(µ) −

α

2
∥T − id ∥2L2(µ) (Young’s inequality)

=
1

2α
∥∇W KL(µ ∥π)∥2L2(µ) setting δ =

1

α
,

hence (PL). � Now, what can be said about the convergence of W2
2(µt, π)?

∂t W2
2(µt, π) = ∂t∥Tµ0→π − id ∥2L2(µt)

= ∂tE∥Xt −X∞∥2 with X∞ ∼ π, (Xt, X∞) optimally coupled

= 2E⟨Xt −X∞, Ẋt⟩
= −2E⟨Xt −X∞, ∇WF(µt)(Xt)⟩µt

≤ −2
(

KL(µt ∥π)︸ ︷︷ ︸
≥0

+
α

2

∫
∥Tµt→π − id ∥2 dµt︸ ︷︷ ︸

=W2
2(µt,π)

)
where we used (4.1) but between µt and π

≤ −αW2
2(µt, π),

and by Grönwall’s lemma, we get that W2
2(µt, π) ≤ W2

2(µ0, π)e−αt.

Remark 4.6 (Functional inequalities). Strong convexity (SC) implies quadratic growth (QG):

F(µ) ≥ α

2
W2

2(µ, π) for all µ. (QG)

For Langevin, this becomes Talagrand’s inequality

KL(µ ∥π) ≥ α

2
W2

2(µ, π) for all µ. (T2)

We saw earlier (2.2) that

χ2(µ ∥π) ≥ KL(µ ∥π) ;

we also have Pinsker’s inequality :

KL(µ ∥π) ≥ 2 ∥µ− π∥2TV . (Pinsker)

One also has:

(SC) =⇒ (LSI)
(∗)

=⇒ (T2) and (SC) =⇒ (PL)
(∗)

=⇒ (QG)

=⇒ (Poincaré)

where (∗) are equivalences if π is log-concave (see [KNS16] for details), and

(LSI) ⇐⇒ (PL) in the Wasserstein space.

Summary.
(1) KL(· ∥π) is α-strongly convex along Wasserstein geodesics if V is α-strongly convex, and this

implies W2
2(µt, νt) ≤ W2

2(µ0, ν0)e−2αt (generalization of what we shown with 2 Langevin processes,
can be done as an exercise)

(2) π satisfies (LSI) with constant 1
α ⇐⇒ KL(πt ∥π) ≤ KL(π0 ∥π)e−2αt

(3) π satisfies (Poincaré) with constant 1
α =⇒ χ2(πt ∥π) ≤ χ2(π0 ∥π)e−2αt
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µ0

π

µt

P2,ac(Rd)

5. Applications

� This new perspective on sampling opens the possibility of algorithms that consist in deterministi-
cally implementing the Wasserstein gradient flow. We review two of them: Stein Variational Gradient
Descent (SVGD) and Variational Inference (VI).
Recall that our goal is still to be able to compute any

∫
φdπ, with the posterior π ∝ e−V . Let’s say that

we dispose of a discrete measure approximating π, for instance π ≈
∑
wiδxi

; then
∫
φdπ ≈

∑
wiφ(xi).

In order to trace a curve t 7→ µt that will asymptotically be close to π, we have 3 possibilities:
(1) Solve the Fokker–Planck equation ∂tµt = div(µt∇V ) + ∆µt by finite elements methods (deter-

ministic): this is implementable via discretization of Rd but not scalable as exponential in the
dimension d;

(2) Run the Langevin diffusion dXt = −∇V (Xt) +
√

2 dBt (random): this is implementable, and
actually better than Fokker–Planck since parametrizable;

(3) Perform a Wasserstein gradient flow of KL(· ∥π) using Ẋt = −∇W KL(µt ∥π) = −∇V (Xt) −
∇ logµt(Xt) (deterministic): this is not readily implementable since we need µt from Xt. The idea
is then to project ∇W KL(µt ∥π)(·) onto “tractable” vector fields.

5.1. Stein Variational gradient descent (SVGD). � Introduced in [LW16], doesn’t really work
or scale but people like it since it is an alternative to MCMC.
Background on kernels and RKHS.

Definition 5.1 (p.s.d. kernel). We say that k : Rd×Rd → R is a positive semi-definite (p.s.d.) kernel
if for all x1, . . . , xn ∈ Rd, (k(xi, xj))1≤i,j≤n is a p.s.d. matrix. This creates a Hilbert space H called
Reproducing Kernel Hilbert Space (RKHS) of functions from Rd to R

H =


n∑

j=1

αjk(xj , ·) | n ≥ 1, αj ∈ R, xj ∈ Rd

 ,

equipped with an inner product ⟨·, ·⟩H and an associated norm ∥ · ∥H.

Example 5.2 (Kernels).

• Gaussian kernel k(x, y) = e−
1
2∥x−y∥2

• Laplace kernel k(x, y) = e−∥x−y∥

• Linear kernel k(x, y) = ⟨x, y⟩ that allows us to fall back on what we know.

The idea is then to look for arg ming∈H KL((I + εg)#µt ∥π). The projection map we are going to

use is Kµ : v(·) 7→
∫
K(·, y)v(y) dµ(y), where K has vectorial values but where we assume K(x, y) =

k(x, y)Id. If k(x, y) = δx=y, then Kµv = v. This is interesting for us since we can compute

Kµ∇W KL(µ ∥π) =

∫
k(x, y)∇ log

µ

π
(y) dµ(y)

=

∫
k(x, y)

∇µ
µ

(y) dµ(y) +

∫
k(x, y)∇V (y) dµ(y)

= −
∫

∇yk(x, y) dµ(y) +

∫
k(x, y)∇V (y) dµ(y). (integration by parts)

The new dynamics are:

Ẋt = −Kµt
∇W KL(µt ∥π)(Xt)
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= −
∫
k(Xt, y)∇V (y) dµt(y) +

∫
∇yk(Xt, y) dµt(y),

which is now linear in µt!

Remark 5.3 (Discrete case). If we initialize at µ0 = 1
n

∑n
j=1 δx(j)

0
, a mixture of n masses, we will end

up at time t with a mixture of n masses µt = 1
n

∑n
j=1 δx(j)

t
and the particles are going to evolve in a

coupled way:

ẋ
(i)
t = −

∫
k(x

(i)
t , y)∇V (y) dµt(y) +

∫
∇yk(x

(i)
t , y) dµt(y)

= − 1

n

n∑
j=1

k(x
(i)
t , x

(j)
t )∇V (x

(j)
t ) +

∫
∇yk(x

(i)
t , x

(j)
t ).

Hence particles that are close from each other in the sense of k will interact.

Remark 5.4. If k(x, y) = k(x− y),∫
∇yk(x, y) dµ(y) =

∫
∇k(x− y) dµ(y) = ∇WW(µ),

where W(µ) =
∫
k(x− y) dµ(x) dµ(y): the second term of the dynamics is an interaction potential.

Remark 5.5. H does not contain L2. How is it that it works then? We modded out some directions,
how could we have µt → π? Actually, is kind of a miracle. We would like to have

∀x,
∫
k(x, y)∇ log

µ

π
(y) dµ(y) = 0 =⇒ µ = π ;

integrating this equality gives

Sk(µ∥π) :=

∫∫
k(x, y)

〈
∇ log

µ

π
(y), ∇ log

µ

π
(x)
〉

dµ(x) dµ(y) = 0,

where Sk is the kernelized Stein discrepancy. It is actually a kernelized version of the Fisher Information
(FI). Can we then obtain ∇ log µ

π = 0?

Definition 5.6 (ISPD kernel). A kernel k is called integrally strictly positive definite (ISPD) if

∀g ̸= 0 ∈ L2,

∫∫
k(x, y)g(x)g(y) dxdy > 0.

Remark 5.7. The Gaussian and Laplace kernels are ISPD.

Lemma 5.8. Let k be ISPD. Then Sk(µ∥π) ≥ 0 with equality if and only if µ = π.

We now have that Kµ∇W KL(µ ∥π) = 0 =⇒ π = µ a.e..
But what is the rate of convergence? This is still very unclear, and there are lots of open questions.
We will need something that looks like a (PL) inequality:

Definition 5.9 (Stein log-Sobolev inequality). The KL is said to satisfy the Stein log-Sobolev in-
equality if

2αKL(µ ∥π) ≤
∫

∥Kµ∇W KL(µ ∥π)∥2.

� This can be compared with the (PL) over the new space.

[DNS19] defines the Stein geometry:

d(µ0, µ1) = inf

∫ 1

0

∥vt∥ dµt s.t. (CE) holds (before)

d(µ0, µ1) = inf

∫ 1

0

∥Kµt
vt∥dµt s.t. (CE) holds (now)

They also claim that the Stein LSI does not hold; but can we find simple families of µ and π such that
it does not hold?
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Remark 5.10. Some open questions, some of them being studied by A. Korba, A. Salim [Kor+20]:
• n → ∞ (number of particles): how close are the discrete and true trajectories? → propagation of

chaos, the distance between the two is exponential in the time T

• for finite n, what is limt→∞ µ̂t = 1
n

∑n
i=1 x

(i)
t ? It does have some optimal quantization properties,

like following a honeycomb pattern. Can we find bounds on the quantity∣∣∣∣∣ 1n
n∑

i=1

φ(x(i)) −
∫
φdµ

∣∣∣∣∣ ?
• Our problem in this course was that we didn’t know how to compute ∇ logµt = ∇µt

µt
; one could

build a kernel density estimator with x
(1)
t , . . . , x

(n)
t :

µ̂t(x) =
1

nhd

n∑
i=1

k

(
x
(i)
t − x

h

)
,

then compute ∇µ̂t

µ̂t
, which works well if µ̂t is smooth. The dynamics we get is

ẋ
(i)
t = −∇V (x

(i)
t ) −

∑n
j=1 ∇k

(
x
(j)
t −x
h

)
h
∑n

j=1 k

(
x
(j)
t −x
h

) ,
which is a competitor for SVGD.

5.2. Variational Inference (VI). � We sketch here the idea of [Lam+22]. The goal: study problems
of the form

arg min
p∈P

KL(p ∥π),

where P is a parametric class, hopefully convenient to compute things like Ep[X] and Covp(X). Usually,
this mainly consists in heuristics, you throw a gradient descent at it and sometimes it works.

Example 5.11 (Some parametric classes P).
• Mean-field VI : P ⊂ {product distributions}, i.e. we do not care about correlation (Figure 6). It is

sometimes sufficient!
• Gaussian VI : P ⊂ {N (m,Σ) | Σ ∈ Sd,m ∈ Rd}, where Sd is the set of spd matrices;
• [Lam+22]: P ⊂ {mixtures of Gaussians}.

p ∈ P

π

Figure 6. Approximating correlated random variables by a product distribution p ∈
P (mean-field VI).

In the case where π is a Gaussian distribution (of mean 0 and covariance matrix I):

KL(N (m,Σ) ∥N (0, I)) =
1

2
[Tr Σ − d+ ∥m∥2 − log det Σ].
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This is convex in (m,Σ)! Now, for a generic π ∝ e−V :

KL(N (m,Σ) ∥π) = −1

2
log det Σ︸ ︷︷ ︸

≈ entropy of N (m,Σ)

+

∫
e−

1
2 (x−m)⊤Σ−1(x−m)

((2π)d det Σ)1/2
V (x) dx︸ ︷︷ ︸

≈ potential energy of N (m,Σ)

+ cst,

which is not convex anymore... but the potential energy reads

EV (N (m,Σ)) = EX∼N (m,Σ)[V (X)] = EZ∼N (0,I)[V (m+ Σ1/2Z)].

Hence

KL(N (m,Σ) ∥π) = − log det Σ1/2 + EZ∼N(0,I)[V (m+ Σ1/2Z)],

and if V is convex, then (m,Σ1/2) 7→ KL(N(m,Σ) ∥π) is convex. We could then perform a stochastic
GD [ARC16].
� What we explore here: does Wasserstein geometry helps (too)?

5.2.1. Bures-Wasserstein. The Bures-Wasserstein distance is an extension of the Bures distance be-
tween SPD matrices. We denote BW(Rd) the set of d-dimensional spd matrices.

g0

g1

P2,ac(Rd)BW(Rd)

� Insight: the Wasserstein geodesic between 2 Gaussians stays in the space of Gaussians. For g0 ∼
N (m0,Σ0) and g1 ∼ N (m1,Σ1), a candidate for an affine transport map is x 7→ Σ

1/2
1 Σ

1/2
0 (x−m0)+m1.

It is the gradient of a function but not of a convex one since Σ
1/2
1 Σ

1/2
0 is not psd... Actually:

Tg0→g1(x) = m1 + Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0︸ ︷︷ ︸

:=S

(x−m0)

has the right mean and covariance. It is the gradient of x 7→ m1x + 1
2∥S

1/2(x − m0)∥2, which is a
convex function since S is psd. We know the form of the Wasserstein geodesics; they will be of the
form gt = [(1−t) id +tTg0→g1 ]#g0. If X0 ∼ g0, then Xt = (1−t)X0+t(m1+S(X0−m0)) ∼ N (mt,Σt).
The geodesics stay in BW(Rd): we say that BW(Rd) is a geodesically convex subset of P2,ac(Rd). Just
rephrasing what we shown above, we know that KL(· ∥π) is α-strongly convex along BW geodesics
⇐⇒ V is α-strongly convex.
The tangent vectors to a geodesic are given by

Tg BW(Rd) = {x 7→ a+ S(x−mg) | a ∈ Rd, S symmetric},

and we can therefore identify Tg GW(Rd) to {(a, S) | a ∈ Rd, S symmetric}. Our metric on Tg BW(Rd)
is then

⟨(a, S), (a′, S′)⟩g =

∫
⟨a+ S(x−mg), a′ + S′(x−mg)⟩dg

= ⟨a, a′⟩ + Eg[Tr(SS′(x−mg)(x−mg)⊤)]

= ⟨a, a′⟩ + Tr(SS′Σg)

= ⟨a, a′⟩ + ⟨S, ΣgS
′⟩.

A geodesic with velocity (a, S) is gt = [id +t(a+S(·−m0))]#g0, the law of Xt = X0+t(a+S(X0−m0)),
hence gt ∼ N (m0 + ta, (I + tS)Σ0(I + tS)). This is fully parametric, and we can precisely tell how mt
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and Σt are moving: {
ṁ0 = a

Σ̇0 = SΣ0 + Σ0S.

Now, what is the BW gradient? Considering gt ∼ N (mt,Σt) of velocity (a, S) at 0, we are looking for
(a, S) = ∇BWf(m0,Σ0) ∈ Tg0 BW(Rd), and we know that

∂t

∣∣∣
t=0

f(mt,Σt) = ⟨∇BWf(m0,Σ0), (a, S)⟩g0 ,

so we are looking for (a, S) such that

⟨a, a⟩ + ⟨S, Σ0S⟩ = ⟨∇mf(m0,Σ0), ṁ0⟩ + ⟨∇Σf(m0,Σ0), Σ̇0⟩
= ⟨∇mf(m0,Σ0), a⟩ + ⟨∇Σf(m0,Σ0), SΣ0 + Σ0S⟩
= ⟨∇mf(m0,Σ0), a⟩ + 2⟨∇Σf(m0,Σ0), Σ0S⟩

and we identify: {
a = ∇mf(m0,Σ0)

S = 2∇Σf(m0,Σ0),

which means that ∇BWf(m0,Σ0) = (∇mf(m0,Σ0), 2∇Σf(m0,Σ0)) and this is also what we would
have got using Alquier’s geometry [ARC16].
BW gradient as a projection of W gradient.

We consider a curve in BW with tangent vectors vt ∈ Tgt BW(Rd). By definition,

∂tF(gt) = ⟨∇BWF(gt), vt⟩gt ,

but we also have

∂tF(gt) = ⟨∇WF(gt), vt⟩gt ,

hence ∇BWF(gt) = projTgt BW(Rd) ∇WF(gt), and that is convenient:{
∇W KL(µ ∥π) = ∇ log µ

π

∇BW KL(µ ∥π) = (a, S),

so we have

⟨a, a⟩ + ⟨S, ΣS⟩ =

∫
⟨∇ log

µ

π
(x), S(x−m)⟩dg(x)

= ⟨
∫

∇ log
µ

π
(x) dg(x), a⟩ +

∫
⟨ΣS∇ log

g

π
(x), Σ−1(x−m)⟩dg(x)︸ ︷︷ ︸

(∗)

.

Since g ∝ e−
1
2 (x−m)⊤Σ−1(x−m), we have that Σ−1(x−m) = −∇ log g = −∇g

g , hence

(∗) = −
∫
⟨ΣS∇ log

g

π
, ∇g⟩dx

=

∫
div
(

ΣS∇ log
g

π

)
dg (divergence theorem)

= ⟨ΣS,
∫

∇2 log
g

π
dg⟩.

We therefore found that

⟨a, a⟩ + ⟨S, ΣS⟩ = ⟨
∫

∇ log
µ

π
(x) dg(x), a⟩ + ⟨ΣS,

∫
∇2 log

g

π
dg⟩,
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and by identification: 
a =

∫
∇g︸ ︷︷ ︸

=∇
∫
g=0

+
∫
∇V dg = Eg[∇V (X)]

S = Eg[∇2V (X)] − Σ−1.

BW gradient flow. The dynamics are:
ṁt = −Egt [∇V (Xt)]

Σ̇t = −Egt [∇2V (Xt)]Σt + Id − ΣtEgt [∇2V (Xt)] + Id

= 2Id − (Egt [∇2V (Xt)]Σt + ΣtEgt [∇2V (Xt)]).

Let’s work a bit on ∇2V (Xt):∫
∇2V dgt = −

∫
⟨∇V, ∇gt

gt
⟩dgt (divergence theorem)

= −
∫

∇V ⊗ log gt dgt

=

∫
∇V ⊗ (Σ−1

t (· −mt)) dgt(∫
∇2V dgt

)
Σt =

∫
∇V ⊗ (· −mt) dgt

Σt

(∫
∇2V dgt

)
=

∫
(· −mt) ⊗∇V dgt.

Hence: {
ṁt = −Egt [∇V (Xt)]

Σ̇t = 2Id − Egt [∇V (Xt) ⊗ (Xt −mt) + (Xt −mt) ⊗∇V (Xt)].
(Särkkä)

This is Särkkä’s heuristic [Sär07]. This is what happens when you constraint the Wasserstein gradient
flow to stay in the space of Gaussians.
Rates of convergence. The PL inequality that we had before assumed that the minimum of the KL was
0, which is not the cas anymore here (since we are on the Gaussians only). For V α-strongly convex,
we would like to have something like

KL(gt ∥π) − min
g Gaussian

KL(g ∥π) ≤ Ce−2αt,

in order to have that for g⋆ = arg ming Gaussian KL(g ∥π),

W2
2(gt, g

⋆) ≤ e−2αt W2
2(g0, g

⋆).

In order to obtain this, we can for instance integrated the coupled ODE (Särkkä) using Runge-Kutta.

Remark 5.12. For mixtures of Gaussians, we can equip the space of measures with a measure µ ∈
P2,ac(BW(Rd))

pµ(x) =

∫
dµ(θ)pθ(x), where θ = (m,Σ),

and everything works (with a different form of divergence), except that we do not have any convergence
guarantee.

Remark 5.13. The fact that we stay with the same number of points is annoying. Wasserstein-
Fisher-Rao gradient flow allows to play with the weights:

µt =

n∑
i=1

w
(i)
t δ

(m
(i)
t ,Σ

(i)
t )
.

See [Lam+22, Section H] for more information.
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