
LOGARITHMIC SOBOLEV INEQUALITIES AND RELATED TOPICS

THÉO DUMONT†

Abstract. This is a short note whose goal is to introduce logarithmic Sobolev inequalities for prob-

ability measures. Starting with Sobolev embeddings and the Sobolev inequality for the Lebesgue
measure, we establish the logarithmic Sobolev inequality that adapts to the infinite-dimensional set-

ting, and state the linear convergence properties it implies on the flow of the relative entropy. We

mention some more inequalities for fun and link these inequalities to their Euclidean counterparts
via the Wasserstein–Otto geometry of probability measures.

This is a learning document and some mistakes or inaccuracies are probably hidden in several places.

If you spot any, feel free to signal them at theo.dumont@univ-eiffel.fr!
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Markov processes.
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1. Introduction

1.1. Convergence of gradient flows in Euclidean spaces. Consider the Euclidean space Rn and
flows of functions f : Rn → R on it, aiming to find an element

x⋆ ∈ arg min
x∈Rn

f(x),

which we assume is non-empty, via

ẋt = −∇f(xt).
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2 THÉO DUMONT

Can we show that our flow will converge to a minimizing element x⋆ ∈ arg minx f(x)? If f is strongly
convex, that is, ∇2f ≥ KI, or

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩+
K

2
∥y − x∥2, (SC)

then x⋆ is unique and

d

dt
∥xt − x⋆∥2 = 2⟨xt − x⋆, ẋt⟩ = −2⟨xt − x⋆,∇f(xt)⟩ ≤ −K∥xt − x⋆∥2,

and Grönwall’s lemma gives linear convergence ∥xt − x⋆∥2 ≤ ∥x0 − x⋆∥2e−Kt. Actually, one merely
needs the Polyak– Lojasiewicz condition

f(x)− f⋆ ≤ 1

2K
∥∇f(x)∥2, (P L)

where f⋆ = minx f(x). This implies in particular that every critical point of f is a global minimizer
of it. This condition was originally introduced by Polyak [Pol63] in 1963, who showed that it is a
sufficient condition for gradient descent to achieve a linear convergence rate. It is a special case of an
inequality introduced in the same year by  Lojasiewicz [ Loj63] (see Remark 1.5). Under this condition,

d

dt

(
f(xt)− f⋆

)
= ⟨∇f(xt), ẋt⟩ = −∥∇f(xt)∥2 ≤ −2K

(
f(xt)− f⋆

)
,

and the linear convergence follows by Grönwall’s lemma. Actually, linear convergence of f(xt) toward
f⋆ for any initial point x0 implies (P L), so it is an equivalence.

Proposition 1.1. (SC)K implies (P L)K .

Proof. Just apply Young’s inequality to the strong convexity inequality. For any κ > 0,

f(x)− f⋆ ≤ ⟨∇f(x), x− x⋆⟩ − K

2
∥x− x⋆∥2 ≤ 1

2κ
∥∇f(x)∥2 +

κ−K

2
∥x− x⋆∥2.

Note that this means that (P L)κ is always satisfied, with some small second-order error term. In
particular, this is (P L)K when κ = K. □

Finally, let us say that f has quadratic growth if

d(x, arg min f)2 ≤ 2

K

(
f(x)− f⋆

)
. (QG)

Quite easily we have the following:

Proposition 1.2. (SC)K implies (QG)K .

But we actually have the stronger result:

Proposition 1.3. (P L)K implies (QG)K .

I couldn’t find a proof for this in the literature, although the result is mentioned at least by Dello
Schiavo, Maas, and Pedrotti [DMP24] and Garrigos and Gower [GG23]. In [LDZ24], an additional
assumption is taken (f + λ

2 ∥ · ∥
2 should be convex for some λ ∈ R), and in [KNS16] a stronger one (f

should be L-smooth, see (Smoothness)) but it seems we don’t need this. The following proof is taken
from Stromme’s talk [Str24] and personal communication.

Proof. Suppose that f satisfies (P L)K . Consider the flow ẋt = −∇f(xt) and the Lyapunov function

h(t) =
√
f(xt)− f⋆ + λ∥xt − x0∥,

where λ is some constant that will be chosen later to make things work. Suppose h non-increasing.
Then the term ∥xt−x0∥ ensures that xt cannot escape and remains in some compact set. Up to taking
a subsequence, xt converges to some x∞ and since f(xt) → f⋆ by (P L), then x∞ ∈ arg min f . Then
we have √

f(x0)− f⋆ = h(0) ≥ lim
t→∞

h(t) = λ∥x∞ − x0∥ ≥ λd(x0, arg min f),
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where we used the decrease of h and the fact that x∞ ∈ arg min f . This is (QG) with constant 2λ2.
To find a λ such that h is non-increasing, compute

h′(t) =
−∥∇f(xt)∥2

2
√
f(xt)− f⋆

− λ
⟨∇f(xt), xt − x0⟩
∥xt − x0∥

≤
−
√

2K
√
f(xt)− f⋆∥∇f(xt)∥

2
√
f(xt)− f⋆

+ λ∥∇f(xt)∥ by (P L) and Cauchy–Schwarz’s inequality

=
(
λ−

√
K/2

)
∥∇f(xt)∥.

Taking λ =
√
K/2 yields h′(t) ≤ 0, hence f satisfies (QG) with constant 2(

√
K/2)2 = K. □

So far, we have:

∥ · ∥ ≲ e−Kt f(·)− f⋆ ≲ e−Kt

(SC)K (P L)K (QG)K
(∗)

where (∗) is an equivalence if f is convex. Actually, if a function f satisfies the quadratic growth
condition (QG), linear convergence of the values of f trivially implies linear convergence of the x’s.
Since (P L) implies (QG), then (P L) implies linear convergence of the x’s as well. See [KNS16; LDZ24]
for more details on these conditions and some other ones as well, and the very nice and detailed [GG23].

Remark 1.4 (Stability of (P L) under bounded change of geometry [Str24]) If we endow Rn with a

metric tensor g that satisfies K̃I ≤ g, then g−1 ≤ K̃−1I and

∥gradg f∥2 = ⟨g−1∇f,∇f⟩ ≤ 1

K̃
∥∇f∥2.

This means that if f satisfies (P L)K/K̃ in the standard geometry, then it satisfies (P L)K in the geometry

induced by g. This is also what we do in Theorem 2.6 for the (Brascamp–Lieb) and (Poincaré)
inequalities. △

Remark 1.5 (Generalizations of (P L)) The (P L) inequality is a special case of the  Lojasiewicz [ Loj63]
inequality (

f(x)− f⋆
)θ ≤ 1√

2K
∥∇f(x)∥, ( L)

where θ ∈ [ 12 , 1). (P L) corresponds to choosing θ = 1
2 in ( L). In the special case where f is con-

vex (hence weakly-convex and (P L) implies convergence of the x’s), then ( L) yields convergence in

O(t−
1−θ
2θ−1 ) when 1

2 < θ < 1. Assume f⋆ = 0. Then the ( L) inequality itself is a special case of the
Kurdyka– Lojasiewicz [Kur98] inequality

1 ≤ ∥∇(φ ◦ f)(x)∥, (K L)

where φ is a desingularizing function: C1, concave, and such that φ(0) = 0 and φ′ > 0. In other

words, up to a reparametrization, f is sharp around x⋆. ( L) corresponds to choosing φ(t) =
√
2K

(1−θ) t
1−θ

in (K L). Regarding the convergence rate: let Φ be such that Φ′ = −φ′2. Convergence of the f(x)’s is
in O(Φ−1(t− t1)) and convergence of the x’s is in O(φ ◦Φ−1(t− t1)) for some t1 ∈ R [Gar15, Theorem
3.1.12].

See also [FG21] for a relaxation of (P L) of the form

g(x)− ξ ≤ 1

2K
∥∇f(x)∥α, (proxy-P L)

which allows for the existence of stationary points that are not globally minimizing via the use of a
proxy function g, [LZB22] for a study of (P L) being satisfied merely on a subset of Rn, or [BPV22] for
a local (P L) inequality guaranteeing convergence given good initial conditions. See also [DMP24] for
more information. △
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Remark 1.6 (Lower bound on the convergence rate for convex functions) If we assume f to be merely
convex (and not strongly-convex for instance), one cannot expect to get a better convergence rate than
O( 1

t2 ), see for instance [Bub+15, Theorem 3.14]. △

Remark 1.7 (Convergence of gradient descent) In practice, we implement the gradient descent

xt+1 = xt − ηt∇f(xt),

where t takes integer values and ηt is the step size. To prove convergence of the values of f to
the minimum value in this discrete scheme, in addition to the (P L) condition one must also assume
smoothness of f , that is, ∇2f ≤ LI, or

f(x)− f(y) ≤ ⟨∇f(y), y − x⟩+
L

2
∥x− y∥2 (Smoothness)

(compare with (SC), which is the opposite bound on the Hessian). If this is satisfied, then

f(xt+1)− f⋆ = f(xt − η∇f(xt))− f⋆

≤ f(xt)− ⟨∇f(xt), η∇f(xt)⟩+
L

2
∥η∇f(xt)∥2 − f⋆ = f(xt)− f⋆ + η

(Lη
2
− 1

)
∥∇f(xt)∥2

Now, if 0 ≤ η ≤ 2/L, then Lη
2 − 1 ≤ 0 and one can apply (P L) to get

f(xt+1)− f⋆ ≤
(
1−Kη(2− Lη)

)(
f(xt)− f⋆

)
= (1−K/L)

(
f(xt)− f⋆

)
when choosing the optimal value η = 1

L . Hence

f(xt)− f⋆ ≤ (1−K/L)t
(
f(x0)− f⋆

)
≤ e−

K
L t

(
f(x0)− f⋆

)
.

1.2. Convergence of the entropy flow in P(Rn). [MV00] In this note, we’re interested in these
kinds of convergence rates but in the space P(Rn) of (smooth) probability measures, for the flow of
the entropy functional H(ρ | e−V ) =

∫
ρ log(ρ/e−V ), which is

∂tρt = div(ρt∇(V + log ρt)) = div(ρt∇V +∇ρt). (Fokker–Planck)

Question 1.8. Take ρt solution of (Fokker–Planck) with target measure γ = e−V . Do we have a
linear convergence rate to γ in terms of some distance/divergence that is still to be chosen?

The stationary state is γ = e−V (up to adding a constant to V , assume that e−V is a probability

distribution). Change variables by writing ρ = he−V , i.e. setting h = dρ
dγ , and the equation on h is:

∂th = ∆h−∇V · ∇h (Fokker–Planck∗)

To quantify the convergence of ρ towards e−V , one could rather check the convergence of h towards 1,
and, for instance, check the evolution of some L2-norm of h− 1. By (Fokker–Planck∗),

d

dt

∫
Rn

(h− 1)2e−V = −2

∫
Rn

∥∇h∥2e−V ,

so maybe the L2(e−V )-norm is the one to look at? If we had some kind of inequality like∫
Rn

(h− 1)2e−V ≤ C

∫
Rn

∥∇h∥2e−V ,

we could use Grönwall’s lemma to get

h0 ∈ L2(e−V ) =⇒ ∥ht − 1∥L2(e−V ) ≤ e−
1
C t∥h0 − 1∥L2(e−V ),

or equivalently

ρ0 ∈ L2(eV ) =⇒ ∥ρt − 1∥L2(eV ) ≤ e−
1
C t∥ρ0 − 1∥L2(eV ).

But while the functional space L2(e−V ) is natural at the level of (Fokker–Planck∗), L2(eV ) at the
level of (Fokker–Planck) is not. We could instead consider a variety of functionals controlling the
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distance between h and 1. Intuitively, we’d like to stay as close as possible to the space L1(dx), that
is, assuming finite mass / using the TV norm. For instance, we could replace ϕ(h) = (h − 1)2 by
ϕ(h) = h log h− h + 1, which yields the relative entropy∫

Rn

ϕ(h)e−V =

∫
Rn

ρ(log ρ + V ) =: H(ρ | e−V )

This is a nice candidate for controlling the distance between two probability distributions because of
the Csiszár–Kullback–Pinsker inequality [Csi63; Kul59; Pin64]

∥ρ− γ∥2TV ≤
1

2
H(ρ | γ). (Pinsker)

1.3. Disclaimer and references. This note borrows shamelessly from slides by Ledoux [Led00],
lecture notes by Rigollet [Rig22], the book of Bakry, Gentil, and Ledoux [BGL14], the nice review
paper by Markowich and Villani [MV00], and other references cited below. See also Villani et al.’s
monographs, [Vil03, Chapter 9] and [Vil+09, Chapter 21]

This note does not aim to be an exhaustive review of logarithmic Sobolev inequalities and related,
as it is merely a learning document. See the above references for more details.

2. From functional inequalities to entropy-information inequalities

2.1. Poincaré inequality.

Proposition 2.1 (p-Poincaré inequality). Let 1 ≤ p < ∞ and Ω ⊆ Rn bounded connected open with
Lipschitz boundary. Then there exists CΩ,p > 0 such that for every f ∈W 1,p(Ω),

∥f − f̄∥Lp(Ω) ≤ CΩ,p∥∇f∥Lp(Ω),

where f̄ = 1
|Ω|

∫
Ω
f(x) dx is the average value of f over Ω.

In the case p = 2, ∥f − f̄∥2L2(Ω) =
∫
f2 dx −

( ∫
f dx

)2
, which is the variance of f with respect to

the Lebesgue measure. More generally, write

Varγ(f) :=

∫
Rn

f2 dγ −
(∫

Rn

f dγ
)2

and say that a measure γ satisfies a Poincaré inequality (or spectral gap) with constant K > 0 if for
all functions f ,

Varγ(f) ≤ 1

K

∫
Rn

∥∇f∥2 dγ. (2.1)

Remark 2.2 (Why spectral gap?) Take f an eigenfunction of −∆ with positive eigenvalue λ > 0.
Then applying (Poincaré):∫

Rn

f2 dx− 0 ≤ 1

K

∫
Rn

f(−∆f) dx =
λ

K

∫
Rn

f2 dx,

hence λ ≥ K and the spectrum of the symmetric positive operator −∆ is included in {0} ∪ [K,∞):
(Poincaré) describes a gap in the spectrum of ∆. The same reasoning can be done with a general
measure γ = e−V instead of the Lebesgue measure, replacing the operator ∆ by L = ∆ +∇V · ∇. △

Remark 2.3 (Spectral gap on manifolds) (Warning: approximate) As such, a whole body of work
focuses on estimating the first positive eigenvalue of (minus) the (Hodge) Laplacian ∆ for functions
(0-forms) on general manifolds M , with constants that depend on the curvature characteristics of the
manifold. It is known that there exists a constant C(n,D, κ) > 0 that bounds this eigenvalue below,
where n, D and κ are the dimension, upper bound on the diameter and lower bound on the Ricci
curvature of M , respectively.



6 THÉO DUMONT

The Hodge Laplacian ∆ = δd + dδ is defined more generally on k-forms, and one could write a
Poincaré inequality for k-forms:

inf
η

∫
M

∥ω − η∥2 vol ≤ 1

K

∫
M

(
∥δω∥2 + ∥dω∥2

)
vol (2.2)

for a k-form ω ∈ Ωk(M), where the infimum in the left-hand side runs over all harmonic k-forms η on
M . See [GM73] for the case k ≥ 1 and [HM24] for the case k = 1 in dimension 4. Note that in the
case k = 0, (2.2) reduces to (2.1) since the minimizer of the left-hand side is η⋆ = (

∫
f vol)2. See also

[BFP16; BFP22]. △

To express this condition with probability measures, just take f = dρ
dγ to get

Varγ

(dρ

dγ

)
≤ 1

K

∫
Rn

∥∥∥∇dρ

dγ

∥∥∥2 dγ,

which is the Poincaré inequality with constant K > 0 for probability measures

χ2(ρ | γ) ≤ 1

K
Eγ(ρ) (Poincaré)

for all probability measures ρ, where we set Eγ(ρ) :=
∫
∥∇ dρ

dγ ∥
2 dγ and used

Varγ

(dρ

dγ

)
=

∫
Rn

(dρ

dγ

)2

dγ −
(∫

Rn

dρ

dγ
dγ

)2

=

∫
Rn

(dρ

dγ

)2

dγ − 1 =: χ2(ρ | γ).

It can be shown that the standard Gaussian measure γn satisfies (Poincaré) with constant K = 1.
Since a direct computation yields d

dtχ
2(ρ | γ) = −Eγ(ρ) along the flow of (Fokker–Planck), Grönwall’s

lemma yields a first answer to our Question 1.8 at the beginning:

Proposition 2.4 (Convergence in χ2 under Poincaré). If γ satisfies (Poincaré)K , then for ρt solution
of (Fokker–Planck)

χ2(ρt | γ) ≤ χ2(ρ0 | γ)e−t/2K .

Actually, the converse also holds [Van14].

Remark 2.5 (Reformulation of (Poincaré)) The (Poincaré) inequality can be rewritten as modified
logarithmic Sobolev inequalities, which are usual logarithmic Sobolev inequalities with a log-Lipschitz
constraint on the test measures. More precisely, the (Poincaré) inequality is equivalent to the existence
of c,K ≥ 0 such that for any Lipschitz probability measure ρ,

∥∇ log ρ∥ ≥ c =⇒ H(ρ | γ) ≤ 1

K
I(ρ | γ). (log-Sobolev (log-Lip))

See [Vil+09, Theorem 22.25] and [BL97]. △

Consider γ = e−V where V is strongly convex, that is, (∇2V )−1 exists. We say that γ satisfies a
Brascamp–Lieb inequality with constant K > 0 if for all f ,

Varγ(f) ≤ K

∫
Rn

⟨(∇2V )−1∇f,∇f⟩dγ. (Brascamp–Lieb)

Note that the right-hand side is just the gradient of f in the geometry induced by the metric tensor
∇2V ; see Remark 1.4.

Theorem 2.6.
[
(Brascamp–Lieb)K and ∇2V ≥ K̃I

]
implies (Poincaré)K/K̃ .

Proof. Direct since ⟨(∇2V )−1∇f,∇f⟩ ≤ 1
K̃
∥∇f∥2. □

Remark 2.7 (Sharp constants). In all theorems of this note that states that one inequality implies
another one, we don’t really care about sharp constants. For instance, it could be the case that the
(Poincaré) inequality with constant K/K̃ satisfied above is also satisfied for some κ < K/K̃. △
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Remark 2.8 (Mirror Langevin and Brascamp–Lieb) The Poincaré inequality can also be stated under
a more general form

Varγ(f) ≤ KEγ(f),

where Eγ is the Dirichlet energy associated with some Markov process. For the infinitesimal generator
L = ∆−∇V · ∇ associated to the Langevin diffusion

dXt = −∇V (Xt) +
√

2 dBt,

the Dirichlet energy is simply Eγ(f) =
∫
∥∇f∥2 dγ. For the mirror Langevin process, defined as

Xt = ∇φ∗(Yt), dYt = −∇V (Xt) dt +
√

2[∇2φ(Xt)]
1/2 dBt,

the Dirichlet energy is Eγ(f) =
∫
⟨(∇2φ)−1∇f,∇f⟩dγ and the corresponding (general) Poincaré in-

equality is the mirror Poincaré inequality

Varγ(f) ≤ K

∫
Rn

⟨(∇2φ)−1∇f,∇f⟩dγ. (mirror Poincaré)

Note that the mirror Langevin process is basically performing a mirror gradient flow ẋ = −(∇2φ)−1∇f(x).
When φ = V , we recover the standard Newton’s method, or the Newton–Langevin process [Che+20],
and the (general) Poincaré inequality is the (Brascamp–Lieb) inequality. △

2.2. Sobolev inequality.

Proposition 2.9 (Gagliardo–Nirenberg–Sobolev inequality). Let 1 ≤ p < n. Then there exists Cn,p >
0 such that

∥f∥Lp∗ ≤ Cn,p∥∇f∥Lp , (GNS)

where 1
p∗ = 1

p −
1
n , i.e. p∗ = p n

n−p > p is the Sobolev conjugate of p. This is the same as saying that

Ẇ 1,p(Rn) ↪→ Lp∗
.1 (GNS emb.)

Remark 2.10 (Why p∗ for the exponent?). The exponent q = p∗ is the only one for which the (GNS)
is invariant under dilation. Indeed, suppose that the inequality ∥f∥Lq ≤ Cn,p∥∇f∥Lp holds for any
smooth compactly supported f , where q is arbitrary. Then define for λ > 0 the rescaled function
fλ(x) = f(λx). Applying the inequality to fλ and changing variables yields

∥f∥Lq ≤ Cn,pλ
1−n

p +n
q ∥∇f∥Lp

for any such f . Then, if 1− n
p + n

q ̸= 0, that is q ̸= p∗, we can either take λ→ 0 or λ→∞ depending

on the sign of 1 − n
p + n

q to get ∥f∥Lq = 0, which is a contradiction (see e.g. [BGL14, Section 6.1]).

Dilations play a central role in the analysis of Sobolev inequalities in Euclidean space [BGL14, Section
6.1], but I don’t really know why yet. △

Proposition 2.11 (Sobolev embedding [Sob38]).
(i) Let k ≥ 0 be an integer and 1 ≤ p < ∞ a real number. For all real numbers ℓ, q such that

k > ℓ, p < n and 1 ≤ p < q <∞ and 1
p −

k
n = 1

q −
ℓ
n , then

W k,p(Rn) ↪→W ℓ,q(Rn), (Sob. emb.)

In the special case k = 1 and ℓ = 0, this means that

W 1,p(Rn) ↪→ Lp∗
(Rn), (Sob. emb.’)

where p∗ = p n
n−p > p is the Sobolev conjugate of p. Intuitively, if f ∈ Lp(Rn) has derivative in

Lp(Rn), then f itself has improved local behavior, meaning that it belongs to the space Lp∗
(Rn)

where p∗ > p.

1We say that A embeds continuously into B, written A ↪→ B, if A ⊆ B and the identity mapping ı : A → B is

continuous/bounded, i.e. there exists a constant C > 0 such that ∥ · ∥B ≤ C∥ · ∥A.
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(ii) (Hölder version) If n < pk and 1
p −

k
n = − r+α

n , then

W k,p(Rn) ↪→ Cr,α(Rn).

Intuitively, the existence of sufficiently many weak derivatives implies some continuity of the
classical derivatives. In the special case r = 0, this means that if f has its kth derivative in Lp

and pk > n, then f is continuous.

Proof.
(i) The special case k = 1 and ℓ = 0 is implied by the Gagliardo–Nirenberg–Sobolev inequality

(GNS). Indeed, it is enough to add the term Cn,p∥f∥Lp to the right-hand side to obtain

W 1,p(Rn) ↪→ Lp∗
(Rn). We can then iterate to obtain higher orders.

(ii) The special case k = 1 and r = 0 is exactly Morrey’s inequality

∥f∥C0,α ≤ Cn,p,α∥f∥W 1,p . (Morrey)

It is enough to prove it, we can then iterate to obtain higher orders. □

Remark 2.12 (More general domains) Sobolev embeddings hold for Sobolev spaces W k,p(M) for
more general domains M , in particular on compact Riemannian manifolds, or complete Riemannian
manifolds with positive injectivity radius and bounded subsectional curvature. △

Remark 2.13 (Sobolev and isoperimetric inequalities) [Dot] The L1 (GNS emb.) inequality

W 1,1(Rn) ↪→ Ln/(n−1)(Rn)

is equivalent to the isoperimetric inequality

Vol(Ω)
n−1
n ≤ C Area(∂Ω),

where the area is in reference to the volume form on ∂Ω. There are also generalizations for manifolds.

Proof. To obtain the isoperimetric inequality, consider piecewise linear bump functions fε that ap-
proximate Ω and take ε → 0. Intuitively, ∥fε∥ approximates Vol(Ω) and ∥∇fε∥ the area by Stokes’
formula. The converse is more involved but should be doable. □

Remark 2.14 (Infinite-dimensional spaces). The special case (Sob. emb.’) of the Sobolev embedding
theorems states that if f ∈ Lp(Rn) has one derivative in ∈ Lp(Rn), then f itself is in ∈ Lp∗

(Rn) where
p∗ = p n

n−p > p. When n→∞, p∗ → p and the improvement in the local behavior of f from having a

derivative in Lp(Rn) becomes zero. In particular, for functions defined on infinite-dimensional spaces,
(Sob. emb.’) doesn’t give anything.

Also, it is pointless to look for an equivalent of the Lebesgue measure on infinite-dimensional spaces,
as any translation-invariant Borel measure on an infinite-dimensional separable Banach space is trivial
(either infinite for all sets or zero for all sets) (proof). Gaussian measures however do admit some
nice generalizations to infinite-dimensional separable Banach spaces E. Say that a Borel measure γ is
Gaussian if L∗γ is a Gaussian on R for every linear functional L ∈ E∗. A way of constructing such
Gaussian measures is the abstract Wiener space, and it is the only one by the structure theorem. How
Gaussian measures change under translations is then dictated by the Cameron–Martin theorem.

So, we’re looking for a variation of (GNS) that preserves information when the dimension increases,
and that can adapt to Gaussian measures [Gro75]. △

2.3. Log-Sobolev inequality.

https://en.wikipedia.org/wiki/Infinite-dimensional_Lebesgue_measure
https://en.wikipedia.org/wiki/Structure_theorem_for_Gaussian_measures
https://en.wikipedia.org/wiki/Cameron–Martin_theorem
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2.3.1. From Sobolev to log-Sobolev. Let us focus on a specific case of (GNS emb.), which is

Ẇ 1,2(Rn) ↪→ Lq(Rn), (GNS emb.2)

where q = 2∗ = 2n
n−2 > 2. Said differently, there exists Cn > 0 such that for any function f : Rn → R

∥f∥2Lq =
(∫

Rn

|f |q dx
)2/q

≤ Cn

∫
Rn

∥∇f∥2 dx = Cn∥∇f∥2L2 .

Recall that in the limit n → ∞, we don’t get anything from (GNS emb.2) since q → 2. The sharp

constant is Cn = 1
πn(n−2)

( Γ(n)
Γ(n/2)

)2/n
[Led00].

Simply taking the log:

n− 2

n
log

(∫
Rn

|f |q dx
)
≤ log

(
Cn

∫
Rn

∥∇f∥2 dx
)
.

Now, assuming that
∫
f2 dx = 1, applying Jensen’s inequality with respect to the measure f2 dx

yields

log
(∫

Rn

|f |q dx
)

= log
(∫

Rn

|f |q−2f2 dx
)
≥

∫
Rn

log
(
|f |q−2

)
f2 dx =

q − 2

2

∫
Rn

log(f2)f2 dx,

hence we get the logarithmic Sobolev inequality for the Lebesgue measure∫
Rn

f2 log f2 dx ≤ n

2
log

(
Cn

∫
Rn

∥∇f∥2 dx
)
. (log-Sobolevdx)

The sharp constant yields n
2 log( 2

nπe . . . ) on the right-hand side. By a change of variables f2 dx ←
f2 dγn with γn the standard Gaussian measure and concavity of the log (i.e. log x ≤ x− 1),∫

Rn

f2 log f2 dγn ≤ 2

∫
Rn

∥∇f∥2 dγn,

which gives the continuous embedding

Ẇ 1,2
γn

(Rn) ↪→ L2
γn

logL2
γn

(Rn). (log-Sob. emb.2)

Compare with (GNS emb.2), which was

Ẇ 1,2(Rn) ↪→ L2 n
n−2 (Rn) −−−−→

n→∞
L2(Rn). (GNS emb.2)

When the dimension goes to infinity, a logarithmic gain remains. Then by a change of variables f2 ← f
and chain rule on ∇f ,∫

Rn

f log f dγn ≤
1

2

∫
Rn

∥∇f∥2

f
dγn =

1

2

∫
Rn

∥∇ log f∥2f dγn.

The quantity on the left-hand side is sometimes written Entγn [f ] in the literature, for instance in
[BGL14], and the right-hand side is the Fisher information Iγn

[f ] (or Dirichlet form), and this inequality
can be written Entγn [f ] ≤ 1

2Iγn [f ]. This holds even if
∫
f dγ is not 1, with an additional term on the

left-hand side. To express this condition with probability measures, just take f = dρ
dγn

and get∫
Rn

ρ log
dρ

dγn
≤ 1

2

∫
Rn

ρ
∥∥∥∇ log

dρ

dγn

∥∥∥2,
for all probability measures ρ, which is the Stam–Gross log-Sobolev inequality [Sta59; Gro75]

H(ρ | γn) ≤ 1

2
I(ρ | γn). (log-Sobolevγn)
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Remark 2.15 (On the change of variable f2 ← f) In the general case of a Dirichlet form E , the
modified log-Sobolev inequality [Van14, Theorem 3.20] reads

Entγ [f ] ≤ 1

2
E(log f, f) =

1

2

∫
Rn

∥∇f∥2

f
dγ (mod. log-Sobolev)

compared to log-Sobolev:

Entγ [f2] ≤ 2E(f, f) = 2

∫
Rn

∥∇f∥2 dγ

In our case where the Dirichlet form is
∫
∥∇f∥2 dγ, that is, given in terms of a gradient that satisfies

the chain rule, these two are equivalent [Van14]. △

Remark 2.16 (Log-Sobolev and Gaussian isoperimetric inequalities) [MV00] There is a notion of
Gaussian isoperimetric inequality, Gaussian counterpart of the Lebesgue isoperimetric inequality we
mentioned in Remark 2.13. △

More generally, we say that a measure γ satisfies a logarithmic Sobolev inequality with constant K > 0
if for all probability measures ρ

H(ρ | γ) ≤ 1

2K
I(ρ | γ). (log-Sobolev)

Straight away, we can link the Poincaré inequality to the logarithmic Sobolev inequality:

Remark 2.17 (Poincaré is linearized log-Sobolev). For g smooth and such that
∫
g dγ = 0,

H
(
(1 + εg)γ | γ

)
=

ε2

2
∥g∥2L2(γ) + o(ε2);

I
(
(1 + εg)γ | γ

)
= ε2∥∇g∥2L2(γ) + o(ε2). △

As a corollary, we get:

Theorem 2.18. (log-Sobolev)K implies (Poincaré)K .

Remark 2.19 (Counterexample for the converse) The exponential measure 1
2e

|x| dx on R satisfies a
(Poincaré)1 inequality, but does not satisfy any (log-Sobolev) inequality. More generally, the measure

∝ e|x|
β

dx on R satisfies a (Poincaré) inequality if and only if β ≥ 1, and a (log-Sobolev) inequality if
and only if β ≥ 2. △

Below is another answer to our Question 1.8 at the beginning:

Proposition 2.20 (Convergence in H under log-Sobolev). If γ satisfies (log-Sobolev)K , then for ρt
solution of (Fokker–Planck)

H(ρt | γ) ≤ H(ρ0 | γ)e−t/2K .

Actually, the converse also holds [Van14].

Proof of the direct implication. Grönwall, using that along the flow of (Fokker–Planck) by direct com-
putation d

dtH(ρ | e−V ) = −I(ρ | e−V ). □

2.3.2. When is log-Sobolev satisfied? We just saw that having a (log-Sobolev) inequality satisfied is
nice: it implies linear convergence to the equilibrium in terms of the relative entropy. It holds if γ
is the standard Gaussian measure γn, see (log-Sobolevγn

). This is nice, but quite limited: this only
concerns the very special case of the quadratic potential V = ∥ · ∥2/2. More generally, to which class
of measures can we extend this result?

Theorem 2.21 (Bakry–Émery condition [BÉ85]). Consider a probability measure e−V on some Rie-
mannian manifold M . If

∇2V + RicM ≥ KIn, (Bak–Ém)

then e−V satisfies (log-Sobolev)K .
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Lemma 2.22 (Holley–Stroock perturbation lemma). If V is of the form V = V0+v, where v ∈ L∞ and
e−V0 satisfies (log-Sobolev)K , then e−V satisfies (log-Sobolev)K exp(osc(v)), where osc(v) = sup v−inf v.

By combining the Bakry–Émery condition with the Holley–Stroock lemma, one can generate a lot of
probability measures satisfying a logarithmic Sobolev inequality [MV00].

If v is unbounded but satisfies
∫
eα∥∇v∥2

e−V0 dx for α large enough, then V also satisfies a (log-
Sobolev) inequality [Vil+09, Remark 21.5].

Remark 2.23 (Non-uniform convexity for V ) Now, suppose that V behaves at infinity like |x|α for
0 < α < 2. If 1 ≤ α < 2, there is no (log-Sobolev) but there is a (Poincaré), hence the linear approach
seems better suited at first; but it’s okay, we can overcome the absence of (log-Sobolev), see [TV00],
by compensating the degeneracy of the convexity using moments to localize the distribution function.
We have

H(ρ | e−V ) ≤ CI(ρ | e−V )1−δMs(ρ)δ,

where Ms(ρ) is the moment of order s > 2 of ρ,

Ms(ρ) =

∫
Rn

(1 + ∥x∥2)s/2 dρ(x) and δ =
2− α

2(2− α) + s− 2
∈ (0, 1/2).

Combining this with a separate study of the time-behavior of moments, one can prove convergence to
equilibrium with rate O(t−κ) for any κ if the initial datum is rapidly decreasing. △

Remark 2.24 (Contraction techniques). In his seminal work [Caf00], Caffarelli proved that the opti-
mal transport map T between two log-concave measures γ1 and γ2 is Lipschitz, with a dimension-free
bound L. The existence of such maps allows to transfer functional inequalities from one measure to
the other. For instance, assuming γ1 satisfies (log-Sobolev)K and T∗γ1 = γ2,∫

f2 log f2γ2 =

∫
(f◦T )2 log(f◦T )2γ1 ≤

2

K

∫
∥∇(f◦T )∥2γ1 ≤

2L

K

∫
∥∇f◦T∥2γ1 =

2L

K

∫
f2 log f2γ2,

hence γ2 satisfies (log-Sobolev)K/L. Since the standard Gaussian measure γn satisfies a (log-Sobolev)

inequality, this recovers the (Bak–Ém) condition. Extensions of Caffarelli’s contraction theorem have
been proven since then: [CFJ15] generalizes it to perturbations of log-concave measures, [CFS24] to
inverse powers of concave functions, and [DS24] to log-subharmonic measures.

Yet, in our case, it is not important that the map is optimal and any Lipschitz map will suffice.
Kim and Milman [KM12] introduced a new construction of such transport maps via Langevin diffusion.
This construction of a flow map does not coincide with the Brenier map in general [Tan21; LS22]. See
[FMS24] for a detailed study of the Lipschitz properties of this flow map and [Kol11] for a review of
generalizations and applications of Caffarelli’s contraction result. See [DS24] for a generalization to
log-subharmonic measures. See also [MS24; LS24]. △

Remark 2.25 (Tensorization). If ρ1 and ρ2 satisfy (log-Sobolev) with constants K1 and K2, respec-
tively, then ρ1 ⊗ ρ2 satisfies (log-Sobolev) with constant min(K1,K2). △

Remark 2.26 (Intrinsic dimensional log-Sobolev [She24; ES24]) In this remark, we go back to the
Lebesgue measure and consider the entropy H and the Fisher information I defined as

H(ρ) := H(ρ | dx) =

∫
Rn

ρ log ρ and I(ρ) := I(ρ | dx) =

∫
Rn

∥∇ log ρ∥2ρ,

respectively. With these notations, (log-Sobolevγn
) can be written [Sta59]

H(ρ)−H(γn) ≤ 1

2
(I(ρ)− n), (LS)

which can be seen for instance by using the change of reference measure formula [AGS14, Lemma 7.2]

H(ρ | γ1) = H(ρ | γ2) +

∫
Rn

log
(dγ2

dγ1

)
dρ.
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If instead, we stopped at (log-Sobolevdx), that is, before weakening the inequality using log x ≤ x− 1,
we would get that the Lebesgue measure satisfies the (stronger) dimensional log-Sobolev inequality
[Sta59; Car91; CC84]

H(ρ)−H(γn) ≤ n

2
log

(I(ρ)

n

)
. (dimensional LS)

To get from (LS) to (dimensional LS), one can apply (LS) with the scaled measure (Tλ)∗ρ where λ > 0
and Tλ : x 7→ λx. Optimizing over λ yields the (dimensional LS) inequality [Dem90]. See [ES24,
Section 1.1.1.] for a formulation of (dimensional LS) over functions f : Rn → R and links to Beckner’s
inequality. When the Fisher information I is large, (dimensional LS) is exponentially better than (LS).
Yet, it doesn’t capture the intrinsic dimension of the measure ρ: suppose that ρ = ρ̃ ⊗ γn−k where
ρ̃ ∈ P(Rk) with k ≤ n. Then, as n increases,

n

2
log

(I(ρ)

n

)
=

n

2
log

(I(ρ̃) + n− k

n

)
−−−−→
n→∞

1

2
(I(ρ̃)− n),

hence (dimensional LS) deteriorates to (LS) when the ambient dimension n increases, insensitive to
the intrinsic dimension of ρ. Dembo [Dem90] showed that (dimensional LS) can be tightened as the
(stronger) intrinsic dimensional log-Sobolev inequality

E(ρ)− E(γn) ≤ 1

2
log det I(ρ), (intrinsic dimensional LS)

where I is the Fisher information matrix

I(ρ) =

∫
Rn

(∇ log ρ)⊗2ρ

Note that I(ρ) = Tr I(ρ). From (dimensional LS), we tightened the bound by log detM ≤ n log TrM
n

which holds for any n×n positive definite matrix M . This inequality captures the intrinsic dimension
of ρ, since each side of it behaves additively with respect to product measures: plugging in ρ = ρ̃⊗γn−k

yields

H(ρ̃)−H(γk) ≤ 1

2
log det I(ρ̃),

as desired. To get from (dimensional LS) to (intrinsic dimensional LS), one can apply (dimensional LS)
with the scaled measure (TΛ)∗ρ where Λ is a positive semidefinite matrix and TΛ : x 7→ Λx. Optimizing
over Λ yields the (intrinsic dimensional LS) inequality [ES24]. One could also imagine other families
acting on measures that would tighten this inequality, or some other ones, as well. The optimization
problem is sometimes too difficult to solve, but Eskenazis and Shenfeld [ES24] manage to do it for
several inequalities. △

Remark 2.27 (Intrinsic dimensional convexity [She24]) First, let us recall some evolution equations
on probability measures, starting with optimal transport flows (geodesics in the Otto geometry). These
are flows (ρt, vt) minimizing the classical Benamou–Brenier functional [BB00]

1

2

∫ 1

0

∫
Ω

∥vt∥2 dρt dt,

while satisfying the continuity equation ∂tρt + div(ρtvt) = 0 between some ρ0 and ρ1. Such minimal
flows satisfy the equation

∂tρt + div(ρt∇pt) = 0, where ∂tpt +
1

2
∥∇pt∥2 = 0. (OT flow)

Next, the heat flow is

∂tρt −
1

2
∆ρt = 0. (heat flow)

Finally ,the entropic interpolation flow is the flow minimizing the functional∫ 1

0

∫
Ω

(1

2
∥vt∥2 +

ε

8
∥∇ log ρt∥2

)
dρt dt
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among flows satisfying the continuity equation. It yields

∂tρt + div(ρt∇pt) = 0, where ∂tpt +
1

2
∥∇pt∥2 +

ε

2

∆ρ
1/2
t

ρ
1/2
t

= 0. (entropic flow)

It is the dynamic formulation of entropic optimal transport and is also known as the Schrödinger
bridge problem [CGP16; GLR17; CGP21]. It encapsulates both the (OT flow) and the (heat flow) in
the limits ε→ 0 and ε→∞, respectively.

Now, back to our remark. McCann [McC97] showed that

the map H(· | vol) is convex along (OT flow). (DCvx)

This is also called displacement convexity (that is, geodesic convexity in the Otto geometry). Even
more, on a Riemannian manifold M , this convexity is equivalent to M having nonnegative Ricci
curvature, and this can be taken as the definition of nonnegative Ricci curvature on more general
metric measure spaces (also written CD(K,∞)). But H(· | vol) is also convex along other flows: for
instance, along the (entropic flow) [Léo17]. There is a stronger curvature condition which incorporates

the effect of the dimension. Restricting to the flat case, this is the CD(0, n) condition of Bakry–Émery
[BGL14]. Erbar, Kuwada, and Sturm [EKS15] showed that the CD(0, n) condition is equivalent to
dimensional displacement convexity, that is,

the map e−H(· | vol)/n is concave along (OT flow). (dimensional DCvx)

It was then shown that the entropy is dimensional displacement convex along the (heat flow) [Cos85],
then along the (entropic flow) [Rip19]. Shenfeld [She24] develop a new notion of matrix displace-
ment convexity, which is stronger than dimensional displacement convexity (and thus than classical
displacement convexity).

the map ... is concave along (OT flow). (intrinsic dimensional DCvx)

△

3. Inequalities again and making sense of everything

3.1. Some more inequalities. Let γ be the standard Gaussian measure. Then [Tal96]

W2(ρ, γ) ≤
√

2H(ρ | γ).

More generally, we say that γ = e−V satisfies a Talagrand inequality with constant K > 0 if for all
probability measures ρ

W2(ρ, γ) ≤
√

2

K
H(ρ | γ). (Talagrand2)

Theorem 3.1 ([OV00]). One has the following chain of implications:
(i) (log-Sobolev)K implies (Talagrand2)K .

(ii) (Talagrand2)K implies (Poincaré)K .
(iii)

[
(Talagrand2)K and V convex

]
imply (log-Sobolev)K/2.

In short:

(log-Sobolev)K (Talagrand2)K (Poincaré)K ,
(∗)

(3.1)

where (∗) is an equivalence if V is convex (see [Vil+09, Theorem 22.21] for a more general statement).

Remark 3.2 (Transport inequalities) The (Talagrand2) inequality is a special case of the so-called
transport inequalities [GL10], of the form

α
(
Tc(ρ, γ)

)
≤ J(ρ | γ),

where Tc is the optimal transport cost with respect to a cost function c, α : [0,∞) → [0,∞) is an
increasing function such that α(0) = 0, and J is some functional on probability measures. When J is
the relative entropy H, one talks about transport-entropy inequalities. Among those:
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(i) The (Talagrand2) inequality corresponds to Tc = W 2
2 .

(ii) The (Talagrand1) inequality corresponds to Tc = W1:

W1(ρ, γ) ≤
√

2

K
H(ρ | γ). (Talagrand1)

Note that since by Jensen’s inequality, T 2
d ≤ Td2 , for a given metric d on the base space,

(Talagrand1) is always weaker than (Talagrand2).
(iii) More generally, the (Talagrandp) inequality corresponds to Tc = W p

p , and since Wp ≤ Wq for
p ≤ q, the Talagrandp inequalities become stronger as p increases.

(iv) The Csiszár–Kullback–(Pinsker) inequality corresponds to Tc = W1 where the metric on the
base space is the Hamming metric dH(x, y) = 1x ̸=y, since TdH

= ∥ · ∥TV.
(v) Define the quadratic-linear cost cql(x, y) = min(d(x, y)2, d(x, y)). Then the quadratic-linear

transport inequality
Tcql(ρ, γ) ≤ CH(ρ | γ)

is equivalent to the (Poincaré) inequality [Vil+09, Theorem 22.25]
See also [Vil+09, Theorem 22.28] for the generalized logarithmic Sobolev and generalized Poincaré
inequalities. When J is the relative Fisher information I, one talks about transport-information in-
equalities [Gui+09b; Gui+09a]. Among those,

(vi) The (W2I) inequality corresponds to Tc = W 2
2 :

W2(ρ, γ) ≤
√

2

K
I(ρ | γ). (W2I)

It is the analogue of (Talagrand2).

(log-Sobolev) (W2I) (Poincaré)
(∗)

where (∗) is an equivalence if V is convex. See [Gui+09b] for the constants and more details,
and also [Ped24] for instance. △

Remark 3.3 (Generalized Fisher information) It is possible to define a generalized Fisher information
[Vil+09, Definition 20.6]

IU (ρ | γ) =

∫
fU ′′(f)∥∇f∥2 dγ =

∫
Rn

∥∇p(f)∥2

f
, f =

dρ

dγ
,

where U : R≥0 → R is a convex C2 function and p(r) = rU ′(r)− U(r). Corresponding variants of the
(HWI) inequality can be found in [Vil+09, Theorem 20.10]. We recover the usual Fisher information
by taking U(r) = r log r. △

The implications in (3.1) are consequences of HWI inequalities [OV00], that mix the relative entropy
H, the Wasserstein distance W2 and the relative Fisher information I (hence the name HWI). A
particular case of it was proven in [Ott01].

Theorem 3.4 (HWI inequality). Consider γ = e−V where ∇2V ≥ KI (K not necessarily nonnega-
tive). Then for any two probability distributions ρ0 and ρ1,

H(ρ0 | γ) ≤ H(ρ1 | γ) + W2(ρ0, ρ1)
√

I(ρ0 | γ)− K

2
W2(ρ0, ρ1)2. (HWI)

In particular, if K > 0 then choosing ρ0 = γ yields

W2(ρ, γ) ≤
√

2

K
H(ρ | γ),

which is the Talagrand inequality (Talagrand2) implied by (log-Sobolev), implied itself by the convexity

of V by the Bakry–Émery condition (Bak–Ém), and choosing ρ1 = γ yields

H(ρ | γ) ≤W2(ρ, γ)
√
I(ρ | γ)− K

2
W2(ρ, γ)2
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≤ 1

2κ
I(ρ | γ) +

κ−K

2
W2(ρ, γ)2 for any κ > 0 by Young’s inequality

=
1

2K
I(ρ | γ) for κ = K,

which is (log-Sobolev) implied by the convexity of V by the Bakry–Émery condition (Bak–Ém). Note
that in any case, a (log-Sobolev) inequality is always satisfied up to a small second-order error term.

3.2. Making sense of everything: interpretation via Otto calculus. The last computation is
exactly the same as in the Euclidean case (Section 1.1, Proposition 1.1), and for a good reason. In

fact, conditions (Bak–Ém), (log-Sobolev) and (Talagrand2) are just conditions (SC), (P L) and (QG)
expressed in the Wasserstein–Otto geometry [Ott01] for the functional H = H(· | γ):

• (SC) Strong convexity of H in the Wasserstein geometry, that is, HessW2
H(ρ) ≥ KI or

displacement convexity, is the (Bak–Ém) condition;
• (P L) Since ∥gradW2

H(ρ)∥2 = I(ρ | γ), the Polyak– Lojasiewicz condition for H is the (log-
Sobolev) inequality, since the minimum H⋆ of H over the whole set of probability measures is
zero;
• (QG) Quadratic growth for H in the Wasserstein geometry is directly (Talagrand2).

See Ambrosio, Gigli, and Savaré [AGS14] for a rigorous in-depth study of this and many other things.
To summarize the correspondences between the Euclidean and Wasserstein cases:

In Rn for f In P(Rn) for H(· | e−V )

(SC) ∇2f ≥ KI (Bak–Ém) ∇2V ≥ KIn
(P L) f(x)− f⋆ ≤ 1

2K ∥∇f(x)∥2 (log-Sobolev) H(ρ | e−V ) ≤ 1
2K I(ρ | e−V )

(QG) ∥x− x⋆∥2 ≤ 2
K (f(x)− f⋆) (Talagrand2) W2(ρ, e−V ) ≤

√
2
KH(ρ | e−V )

? (Poincaré) χ2(ρ | e−V ) ≤ 1
K Ee−V (ρ)

And to sum up what we have so far,

∥ · ∥ ≲ e−Kt f(·)− f⋆ ≲ e−Kt

(SC) (P L) (QG)

(Bak–Ém) (Bak–Ém)Holl–Str (log-Sobolev) (Talagrand2) (Poincaré)

W2(·) ≲ e−Kt H(·) ≲ e−Kt χ2(·) ≲ e−Kt

(∗)

= for H

(∗)

= for H = for H

where (∗) are equivalences if V (or f in Euclidean spaces) is convex. For the bottom equivalences, see
[Van14]. Also, as in the Euclidean case, if (Talagrand2) is satisfied, then linear convergence in H implies
linear convergence in W2. Since we always have (log-Sobolev) =⇒ (Talagrand2), then (log-Sobolev)
also implies linear convergence in terms of W2.

Remark 3.5 (Modified log-Sobolev) In the more general case of Remark 2.15 (i.e. a more general
Dirichlet form that doesn’t necessarily satisfy the chain rule), (mod. log-Sobolev) and (log-Sobolev)
are different. (mod. log-Sobolev) is actually equivalent to linear convergence in the entropy Entγ .

(mod. log-Sobolev)

Entγ(·) ≲ e−Kt
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3.3. Even more inequalities: other ϕ-divergences. In Section 1.2 we used two different diver-
gences to quantify how far our current measure ρ is from the target measure γ. Actually, one can
define a family of relative entropy functionals, named ϕ-divergences, of the form

Dϕ : (ρ, γ) 7−→
∫
Rn

ϕ
(ρ
γ

)
γ,

if ρ ≪ γ, else ∞, with ϕ a convex function satisfying ϕ(1) = 0. Those relative entropy functionals
interpolate between the (classical) relative entropy (ϕ(h) = h log h− h + 1) and the L2(e−V ) distance
(ϕ(h) = (h − 1)2). For each of these entropies one can prove log-Sobolev inequalities, which are
stronger when the nonlinearity in the relative entropy is weaker (the strongest one is the h log h
nonlinearity). Corresponding variants of the Holley–Stroock perturbation lemma and of the Csiszár–
Kullback–(Pinsker) inequality are established in great generality in [Arn+98]. For instance [Tsy03]:

(i) for ϕ(h) = (h− 1)2, this is the L2(e−V ) distance;
(ii) for ϕ(h) = h2 − 1, this is the chi-squared χ2 [Rig22; Che+20]

χ2(ρ | γ) =

∫
Rn

(ρ
γ

)2

γ − 1;

(iii) for ϕ(h) = |h− 1|/2, this is the total variation distance

∥ρ− γ∥TV = supA |ρ(A)− γ(A)|,
which is also equal to 1

2∥ρ− γ∥L1 for densities. It metrizes the strong convergence.

(iv) for ϕ(h) = (
√
h− 1)2, this is the squared Hellinger distance

Hell(ρ, γ)2 =

∫
Rn

(√
ρ−√γ

)2
.

It metrizes the strong convergence.
(v) for ϕ(h) = h log h− h + 1, this is the relative entropy H.

Proposition 3.6 (Inequalities between divergences [Tsy03]).
(i) H and χ2:

H(ρ | γ) ≤ log
(
χ2(ρ | γ) + 1

)
≤ χ2(ρ | γ).

by definition, using Jensen for the first inequality and log x ≤ x−1 for the second one. Actually,
one has that {

H ≈ logχ2 when the distributions are far;

H ≈ χ2 when the distributions are close.

(ii) Hellinger and TV:

1

2
Hell2(ρ, γ) ≤ ∥ρ− γ∥TV ≤ Hell(ρ, γ)

√
1−Hell2(ρ, γ)/4 (Le Cam)

(iii) Hellinger and H:
Hell2(ρ, γ) ≤ H(ρ | γ) (3.2)

(iv) H and TV: Combining (Le Cam) and (3.2) would give ∥ρ − γ∥2TV ≤ H(ρ | γ), but we can
actually have a better constant:

∥ρ− γ∥2TV ≤
1

2
H(ρ | γ). (Pinsker)

See also [BV05] for a weighted version. When H is large (greater than 2), (Pinsker) is trivial,
so one should rather use the Bretagnolle–Huber bound [BH78; Can22; Tsy03]

∥ρ− γ∥TV ≤
√

1− e−H(ρ | γ) ≤ 1− 1

2
e−H(ρ | γ) (BH)

Summing up,

∥ρ− γ∥TV ≤ Hell(ρ, γ) ≤
√

H(ρ | γ) ≤
√
χ2(ρ | γ).
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Toulouse: Mathématiques. Vol. 14. 3. 2005, pp. 331–352 (cit. on p. 16).

[Caf00] Luis A Caffarelli. “Monotonicity properties of optimal transportation and the FKG and
related inequalities”. In: Communications in Mathematical Physics 214 (2000), pp. 547–
563 (cit. on p. 11).

[Can22] Clément L Canonne. “A short note on an inequality between KL and TV”. In: (2022).
arXiv: 2202.07198 (cit. on p. 16).

[Car91] Eric A Carlen. “Superadditivity of Fisher’s information and logarithmic Sobolev inequal-
ities”. In: Journal of Functional Analysis 101.1 (1991), pp. 194–211 (cit. on p. 12).

[CC84] Max Costa and Thomas Cover. “On the similarity of the entropy power inequality and
the Brunn-Minkowski inequality (corresp.)” In: IEEE Transactions on Information Theory
30.6 (1984), pp. 837–839 (cit. on p. 12).

[CFJ15] Maria Colombo, Alessio Figalli, and Yash Jhaveri. “Lipschitz changes of variables between
perturbations of log-concave measures”. In: (2015). arXiv: 1510.03687 (cit. on p. 11).

[CFS24] Guillaume Carlier, Alessio Figalli, and Filippo Santambrogio. “On optimal transport maps
between 1/d-concave densities”. In: arXiv preprint arXiv:2404.05456 (2024) (cit. on p. 11).

[CGP16] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. “On the relation between op-
timal transport and Schrödinger bridges: A stochastic control viewpoint”. In: Journal of
Optimization Theory and Applications 169 (2016), pp. 671–691 (cit. on p. 13).

https://arxiv.org/abs/2202.07198
https://arxiv.org/abs/1510.03687


18 REFERENCES

[CGP21] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. “Stochastic control liaisons:
Richard sinkhorn meets gaspard monge on a schrodinger bridge”. In: Siam Review 63.2
(2021), pp. 249–313 (cit. on p. 13).

[Che+20] Sinho Chewi, Thibaut Le Gouic, Chen Lu, Tyler Maunu, Philippe Rigollet, and Austin
Stromme. “Exponential ergodicity of mirror-Langevin diffusions”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 19573–19585 (cit. on pp. 7, 16).

[Cos85] Max Costa. “A new entropy power inequality”. In: IEEE Transactions on Information
Theory 31.6 (1985), pp. 751–760 (cit. on p. 13).

[Csi63] Imre Csiszár. “Eine informationstheoretische Ungleichung und ihre Anwendung auf den
Beweis der Ergodizität von Markoffschen Ketten”. In: A Magyar Tudományos Akadémia
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nica Federico Santa Maria, 2015 (cit. on p. 3).

[GG23] Guillaume Garrigos and Robert M Gower. “Handbook of convergence theorems for (sto-
chastic) gradient methods”. In: arXiv preprint arXiv:2301.11235 (2023) (cit. on pp. 2,
3).
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[Sob38] S Soboleff. “Sur un théorème d’analyse fonctionnelle”. In: Matematicheskii Sbornik 46.3
(1938), pp. 471–497 (cit. on p. 7).

[Sta59] Aart J Stam. “Some inequalities satisfied by the quantities of information of Fisher and
Shannon”. In: Information and Control 2.2 (1959), pp. 101–112 (cit. on pp. 9, 11, 12).

[Str24] Austin Stromme. “Asymptotic log-Sobolev constants and the Polyak- Lojasiewicz gradient
domination condition”. Séminaire Parisien d’Optimisation. 2024 (cit. on pp. 2, 3).

[Tal96] Michel Talagrand. “Transportation cost for Gaussian and other product measures”. In:
Geometric & Functional Analysis GAFA 6.3 (1996), pp. 587–600 (cit. on p. 13).

[Tan21] Anastasiya Tanana. “Comparison of transport map generated by heat flow interpolation
and the optimal transport Brenier map”. In: Communications in Contemporary Mathe-
matics 23.06 (2021), p. 2050025 (cit. on p. 11).
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